Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. FETCH: A Fast and Efficient Technique for Channel Selection in EEG Wearable Systems
 
conference paper not in proceedings

FETCH: A Fast and Efficient Technique for Channel Selection in EEG Wearable Systems

Amirshahi, Alireza  
•
Dan, Jonathan  
•
Miranda Calero, José Angel  
Show more
April 4, 2024
Conference on Health, Inference, and Learning

The rapid development of wearable biomedical systems now enables real-time monitoring of electroencephalography (EEG) signals. Acquisition of these signals relies on electrodes. These systems must meet the design challenge of selecting an optimal set of electrodes that balances performance and usability constraints. The search for the optimal subset of electrodes from a larger set is a problem with combinatorial complexity. While existing research has primarily focused on search strategies that only explore limited combinations, our methodology proposes a computationally efficient way to explore all combinations. To avoid the computational burden associated with training the model for each combination, we leverage an innovative approach inspired by few-shot learning. Remarkably, this strategy covers all the wearable electrode combinations while significantly reducing training time compared to retraining the network on each possible combination. In the context of an epileptic seizure detection task, the proposed method achieves an AUC value of 0.917 with configurations using eight electrodes. This performance matches that of prior research but is achieved in significantly less time, transforming a process that would span months into a matter of hours on a single GPU device. Our work allows comprehensive exploration of electrode configurations in wearable biomedical device design, yielding insights that enhance performance and real-world feasibility.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CHIL2024_FETCH_preprint_updated.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

License Condition

CC BY

Size

1.12 MB

Format

Adobe PDF

Checksum (MD5)

8f224dc207e27caa719d4f6d9eeee9d8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés