Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ion Adsorption Enhances Apparent Nonelectrostatic Attraction between Monomers in Polyelectrolyte Brushes
 
research article

Ion Adsorption Enhances Apparent Nonelectrostatic Attraction between Monomers in Polyelectrolyte Brushes

Li, Minglun
•
Xu, Xin
•
Yasar, Samen
Show more
March 26, 2024
Macromolecules

Polyelectrolyte brushes are responsive to salt in the environment, and this has found broad applications in antifouling, biolubrication, and drug delivery. Salt primarily influences the conformation of the polyelectrolytes through ion adsorption. While ion adsorption is typically associated with electrostatic interactions, our research reveals that in multivalent ion solutions, it also enhances nonelectrostatic interactions by bringing distant polyelectrolyte segments closer together. The finding is based on a comparative study between theoretical, simulation, and experimental data for monovalent, divalent, and trivalent cation solutions of sodium poly(styrenesulfonate) (PSS) and potassium poly(3-sulfopropyl methacrylate) (PSPMA) brushes. By incorporating an apparent Flory-Huggins parameter that is linearly dependent on the extent of ion adsorption, we developed a theoretical model for polyelectrolyte brushes that predicts brush heights in good agreement with experimental and simulation data. This work provides three major contributions to our understanding of polyelectrolyte brushes. (a) The theoretical framework reveals that while electrostatic interactions primarily drive the contraction of short-chain brushes (approximately 50 monomers), nonelectrostatic interactions arising from ion adsorption induce the collapse of long-chain brushes (approximately 500 monomers) in multivalent ion solutions. (b) Traditional scaling theory is applied only to long polymer chains in monovalent cation systems. Our modified framework broadens the scope to include both short and long chains in both monovalent and multivalent systems, while most of the traditional scaling theory can only be applied to long-chain systems. (c) We provided a comprehensive quantitative examination of the inter- and intrachain cross-links.

  • Details
  • Metrics
Type
research article
DOI
10.1021/acs.macromol.3c01800
Web of Science ID

WOS:001191232000001

Author(s)
Li, Minglun
Xu, Xin
Yasar, Samen
Klok, Harm-Anton  
Zhuang, Bilin
Yu, Jing
Date Issued

2024-03-26

Publisher

American Chemical Society

Published in
Macromolecules
Subjects

Physical Sciences

•

Charged Polymers

•

Simulations

•

Dynamics

•

Behavior

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ISIC-GE  
FunderGrant Number

Agency for Science, Technology and Research

NRF-NRFF11-2019-0004

Singapore National Research Fellowship

A20E6c0100

A*STAR under its AME YIRG Grant

Available on Infoscience
April 3, 2024
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/206998
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés