Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Modified capillary number to standardize droplet generation in suction-driven microfluidics
 
research article

Modified capillary number to standardize droplet generation in suction-driven microfluidics

Panwar, Jatin  
•
Roy, Rahul
April 1, 2024
Microfluidics And Nanofluidics

In droplet microfluidic devices with suction-based flow control, the microchannel geometry and suction pressure at the outlet govern the dynamic properties of the two phases that influence the droplet generation. Therefore, it is critical to understand the role of geometry along with suction pressure in the dynamics of droplet generation to develop a predictive model. We conducted a comprehensive characterization of droplet generation in a flow focusing device with varying control parameters. We used these results to formulate a scaling argument and propose a governing parameter, called as modified capillary number (CaL), that combines normalized droplet volume with geometrical parameters (length of dispersed and continuous phase channels) and flow parameters (interfacial tension, phase viscosity and velocity) in a power law relationship. CaL effectively captures the transition from squeezing to dripping regimes of droplet generation, providing essential insights into the design requirements for suction-driven droplet generation. These findings are key to standardize microfluidic flow-focusing devices that can achieve the desired droplet generation behavior with optimal pressure consumption.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

940.7 KB

Format

Adobe PDF

Checksum (MD5)

5a28cd6e2284462c652d3cc530e4f7af

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés