First Advanced Bilayer Scaffolds for Tailored Skin Tissue Engineering Produced via Electrospinning and Melt Electrowriting
In vitro skin models are validated methods for screening cosmetics and pharmaceuticals, but still have limitations. The bilayer poly(epsilon-caprolactone) scaffold/membrane model described here overcomes some of these deficits by integrating a solution electrospun (SES) membrane at the dermoepidermal interface and a melt electrowritten (MEW) scaffold that provides an optimal open-pore environment for the dermis. To the knowledge, this scaffold/membrane model is the only one capable of creating a properly differentiated, full thickness skin model with neosynthesized extracellular matrix (ECM) in only 18 days. Both the wavy and straight fiber scaffold designs create a well-organized dermis, but dermal collagen organization differs between designs. Adding cells and vitamin C to the scaffolds improves the mechanical properties to more closely mimic native human skin. These findings establish bicomponent scaffolds as a promising advancement for rapidly creating different skin models with varied properties. The versatility and adaptability of the described model can be used for studying how the biological and physical microenvironment impact skin, and testing dermo-cosmetics and pharmaceutical treatments on different ages of skin. Furthermore, it can be an excellent new tool for studying wound healing and development into its use as a graft or wound dressing is ongoing.|An innovative skin model closely mimicking native human skin properties in only 18 days of culture is developed using a bilayer scaffold. This model is a valuable tool for studying skin responses to microenvironment variations, creating pathological skin models, and testing pharmaceutical treatments. Additionally, it shows promise for wound healing and skin graft applications. image
WOS:001180235200001
2024-03-07
REVIEWED
Funder | Grant Number |
L'Oral Advanced Research | |
Holzapfel Research Professor in Transformational Science and Mathematics Fund | |
M.J. Murdock Charitable Trust | SR-201812008 |
EACEA training program BIOFAB | FR3127134 (B1) |