Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Tandem catalysis enables chlorine-containing waste as chlorination reagents
 
research article

Tandem catalysis enables chlorine-containing waste as chlorination reagents

Liu, Mingyang  
•
Wu, Xinbang  
•
Dyson, Paul J  
February 23, 2024
Nature Chemistry

Chlorinated compounds are ubiquitous. However, accumulation of chlorine-containing waste has a negative impact on human health and the environment due to the inapplicability of common disposal methods, such as landfill and incineration. Here we report a sustainable approach to valorize chlorine-containing hydrocarbon waste, including solids (chlorinated polymers) and liquids (chlorinated solvents), based on copper and palladium catalysts with a NaNO3 promoter. In the process, waste is oxidized to release the chlorine in the presence of N-directing arenes to afford valuable aryl chlorides, such as the FDA-approved drug vismodegib. The remaining hydrocarbon component is mineralized to afford CO, CO2 and H2O. Moreover, the CO and CO2 generated could be further utilized directly. Thus, chlorine-containing hydrocarbon waste, including mixed waste, can serve as chlorination reagents that neither generate hazardous by-products nor involve specialty chlorination reagents. This tandem catalytic approach represents a promising method for the viable management of a wide and diverse range of chlorine-containing hydrocarbon wastes.|While chlorinated compounds are ubiquitous in chemical synthesis, they have a negative impact on human health and the environment. Now, a sustainable tandem catalytic process has been developed that uses chlorine-containing waste as chlorination reagents. This approach represents a promising way for the viable management of chlorinated compounds.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.82 MB

Format

Adobe PDF

Checksum (MD5)

f99df8f76148afd8491bb5a40654096b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés