Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Quantifying mass transport limitations in a microfluidic CO2 electrolyzer with a gas diffusion cathode
 
research article

Quantifying mass transport limitations in a microfluidic CO2 electrolyzer with a gas diffusion cathode

Agarwal, Venu Gopal  
•
Haussener, Sophia  
2024
Communications Chemistry

A gas diffusion electrode (GDE) based CO2 electrolyzer shows enhanced CO2 transport to the catalyst surface, significantly increasing current density compared to traditional planar immersed electrodes. A two-dimensional model for the cathode side of a microfluidic CO2 to CO electrolysis device with a GDE is developed. The model, validated against experimental data, examines key operational parameters and electrode materials. It predicts an initial rise in CO partial current density (PCD), peaking at 75 mA cm−2 at −1.3 V vs RHE for a fully flooded catalyst layer, then declining due to continuous decrease in CO2 availability near the catalyst surface. Factors like electrolyte flow rate and CO2 gas mass flow rate influence PCD, with a trade-off between high CO PCD and CO2 conversion efficiency observed with increased CO2 gas flow. We observe that a significant portion of the catalyst layer remains underutilized, and suggest improvements like varying electrode porosity and anisotropic layers to enhance mass transport and CO PCD. This research offers insights into optimizing CO2 electrolysis device performance.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s42004-024-01122-5.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

3.02 MB

Format

Adobe PDF

Checksum (MD5)

58f6e6fb00dcc5b118ec99e62ac0c9da

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés