Quantifying single-cell diacylglycerol signaling kinetics after uncaging
Studying the role of molecularly distinct lipid species in cell signaling remains challenging due to a scarcity of methods for performing quantitative lipid biochemistry in living cells. We have recently used lipid uncaging to quantify lipid -pro-tein affinities and rates of lipid trans-bilayer movement and turnover in the diacylglycerol signaling pathway. This approach is based on acquiring live-cell dose-response curves requiring light dose titrations and experimental determination of uncaging photoreaction efficiency. We here aimed to develop a methodological approach that allows us to retrieve quantitative kinetic data from uncaging experiments that 1) require only typically available datasets without the need for specialized additional con-straints and 2) should in principle be applicable to other types of photoactivation experiments. Our new analysis framework al-lows us to identify model parameters such as diacylglycerol-protein affinities and trans-bilayer movement rates, together with initial uncaged diacylglycerol levels, using noisy single-cell data for a broad variety of structurally different diacylglycerol species. We find that lipid unsaturation degree and side-chain length generally correlate with faster lipid trans-bilayer movement and turn-over and also affect lipid-protein affinities. In summary, our work demonstrates how rate parameters and lipid-protein affinities can be quantified from single-cell signaling trajectories with sufficient sensitivity to resolve the subtle kinetic differences caused the chemical of cellular
WOS:001145665200001
2023-12-19
122
24
4699
4709
REVIEWED
Funder | Grant Number |
EPFL School of Life Sciences | |
European Research Council (ERC) under the European Union | GA 758334 ASYM-MEM |
Deutsche Forschungsgemeinschaft (DFG) | |
MPI-CBG | |