Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning
 
research article

A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning

Vinals Terres, Roser  
•
Thiran, Jean-Philippe  
November 23, 2023
Journal of Imaging

Ultrafast ultrasound imaging, characterized by high frame rates, generates low-quality images. Convolutional neural networks (CNNs) have demonstrated great potential to enhance image quality without compromising the frame rate. However, CNNs have been mostly trained on simulated or phantom images, leading to suboptimal performance on in vivo images. In this study, we present a method to enhance the quality of single plane wave (PW) acquisitions using a CNN trained on in vivo images. Our contribution is twofold. Firstly, we introduce a training loss function that accounts for the high dynamic range of the radio frequency data and uses the Kullback–Leibler divergence to preserve the probability distributions of the echogenicity values. Secondly, we conduct an extensive performance analysis on a large new in vivo dataset of 20,000 images, comparing the predicted images to the target images resulting from the coherent compounding of 87 PWs. Applying a volunteer-based dataset split, the peak signal-to-noise ratio and structural similarity index measure increase, respectively, from 16.466 ± 0.801 dB and 0.105 ± 0.060, calculated between the single PW and target images, to 20.292 ± 0.307 dB and 0.272 ± 0.040, between predicted and target images. Our results demonstrate significant improvements in image quality, effectively reducing artifacts.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

jimaging-09-00256.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

25.67 MB

Format

Adobe PDF

Checksum (MD5)

cd437b252dc3a6403ed625aad7e70088

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés