Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Blunted Glucocorticoid Responsiveness to Stress Causes Behavioral and Biological Alterations That Lead to Posttraumatic Stress Disorder Vulnerability
 
research article

Blunted Glucocorticoid Responsiveness to Stress Causes Behavioral and Biological Alterations That Lead to Posttraumatic Stress Disorder Vulnerability

Monari, Silvia  
•
Guillot de Suduiraut, Isabelle  
•
Grosse, Jocelyn  
Show more
2023
Biological Psychiatry

Background: Understanding why only a subset of trauma-exposed individuals develop posttraumatic stress disorder is critical for advancing clinical strategies. A few behavioral (deficits in fear extinction) and biological (blunted glucocorticoid levels, small hippocampal size, and rapid-eye-movement sleep [REMS] disturbances) traits have been identified as potential vulnerability factors. However, whether and to what extent these traits are interrelated and whether one of them could causally engender the others are not known. Methods In a genetically selected rat model of reduced corticosterone responsiveness to stress, we explored posttraumatic stress disorder–related biobehavioral traits using ex vivo magnetic resonance imaging, cued fear conditioning, and polysomnographic recordings combined with in vivo photometric measurements. Results: We showed that genetic selection for blunted glucocorticoid responsiveness led to a correlated multitrait response, including impaired fear extinction (observed in males but not in females), small hippocampal volume, and REMS disturbances, supporting their interrelatedness. Fear extinction deficits and concomitant disruptions in REMS could be normalized through postextinction corticosterone administration, causally implicating glucocorticoid deficiency in two core posttraumatic stress disorder–related risk factors and manifestations. Furthermore, reduced REMS was accompanied by higher norepinephrine levels in the hippocampal dentate gyrus that were also reversed by postextinction corticosterone treatment. Conclusions: Our results indicate a predominant role for glucocorticoid deficiency over the contribution of reduced hippocampal volume in engendering both REMS alterations and associated deficits in fear extinction consolidation, and they causally implicate blunted glucocorticoids in sustaining neurophysiological disturbances that lead to fear extinction deficits.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Monari_Blunted Glucocorticoid responsiveness to stress.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.05 MB

Format

Adobe PDF

Checksum (MD5)

12b18b46f57fea75f1dd6d1cc74f9b82

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés