Pathway and directional specificity of Hebbian plasticity in the cortical visual motion processing network
Cortico-cortical paired associative stimulation (ccPAS), which repeatedly pairs single-pulse transcranial magnetic stimulation (TMS) over two distant brain regions, is thought to modulate synaptic plasticity. We explored its spatial selectivity (pathway and direction specificity) and its nature (oscillatory signature and perceptual consequences) when applied along the ascending (Forward) and descending (Backward) motion discrimination pathway. We found unspecific connectivity increases in bottom- up inputs in the low gamma band, probably reflecting visual task exposure. A clear distinction in information transfer occurred in the re-entrant alpha signals, which were only modulated by Backward-ccPAS, and predictive of visual improvements in healthy participants. These results suggest a causal involvement of the re-entrant MT-to-V1 low-frequency inputs in motion discrimination and integration in healthy participants. Modulating re-entrant input activity could provide single-subject prediction scenarios for visual recovery. Visual recovery might indeed partly rely on these residual inputs projecting to spared V1 neurons.
1-s2.0-S2589004223011410-main.pdf
publisher
openaccess
CC BY-NC-ND
4.05 MB
Adobe PDF
1f69586308aea352aeb17b452c95d1d5