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Abstract

Variability is a universal feature among biological units such as neuronal cells as they enable a robust
encoding of a high volume of information in neuronal circuits and prevent hyper synchronizations such as
epileptic seizures. While most computational studies on electrophysiological variability in neuronal circuits
were done with simplified neuron models, we instead focus on the variability of detailed biophysical models
of neurons. With measures of experimental variability, we leverage a Markov chain Monte Carlo method to
generate populations of electrical models able to reproduce the variability from sets of experimental recordings.
By matching input resistances of soma and axon initial segments with the one of dendrites, we produce a
compatible set of morphologies and electrical models that faithfully represent a given morpho-electrical type.
We demonstrate our approach on layer 5 pyramidal cells with continuous adapting firing type and show that
morphological variability is insufficient to reproduce electrical variability. Overall, this approach provides a
strong statistical basis to create detailed models of neurons with controlled variability.

Introduction

Neurons in the brain are highly heterogeneous, both
in terms of morphologies and electrical phenotypes.
Attempts have been made to classify them into mor-
phological, electrical, or combined morpho-electrical
types [Gupta et al., 2000, pet, 2008, Gouwens et al.,
2019], however even within a single cell type, cells are
highly variable. For example, morphologies grow in the
available space following the local signalling processes,
hence their shapes and sizes are location-specific and
unique [Galloni et al., 2020] and have an impact on elec-
trical properties [Eyal et al., 2014]. Morphological vari-
ability has been studied in the context of robust circuit
structural connectivity for example in [Hill et al., 2012,
Ramaswamy et al., 2012, Croxson et al., 2018]. Also,
the electrophysiological features of cells within a firing
type are often highly variable. More generally, biolog-
ical noise and variability have implications in a wide
range of brain mechanisms such as behaviours [Faisal
et al., 2008], computation [Findling and Wyart, 2021],
information processing [Destexhe, 2022] or for brain dy-
namics [Laing and Lord, 2009]. Here, we want to model
the variability of cell firing properties among a given

firing type. Such inter-type variability has a biologi-
cal basis, but from a modelling perspective, it origi-
nates from a trade-off one has to make to define a few
representative cell types with specific firing types. In-
deed, cells often form a ’continuum of types’, as visible
from the often blurry limits where some cells cannot
be consistently classified [Gouwens et al., 2019, Scala
et al., 2021]. In particular, firing variability has been
shown to be important for a range of biological mecha-
nisms of the brain, such as for network properties [Aradi
and Soltesz, 2002], resilience to changes in synchrony
with epilepsy [Santhakumar and Soltesz, 2004, Hutt
et al., 2022, Rich et al., 2022], increased information
content for efficient population coding [Padmanabhan
and Urban, 2010, Tripathy et al., 2013, Chelaru and
Dragoi, 2008, Mejias and Longtin, 2012] or energy effi-
ciency [Deistler et al., 2022].

A cell type definition should not only account for
specific values of certain electrophysiological features
but also for their variability. Within a cell type, this
variability will differ across species, age, or even brain
regions and must therefore be factored in. In fact, for
modelling studies ranging from detailed single cells to
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circuit simulations, such a complete characterisation of
cell types will play an important role. First, for single-
cell modelling, the unknown implications of the feature
variability on ion channel conductances can be quanti-
fied by considering an ensemble of models. This ensem-
ble of models will be less susceptible to containing bias
than a fixed set of conductances [Marder and Goaillard,
2006]. Second, one can study the interplay between
these conductances and the resulting firing types to gain
a theoretical understanding or even propose some exper-
imentally verifiable modelling hypotheses. Third, hav-
ing a large population of valid, but generic models, al-
lows the selection of sub-populations with specific prop-
erties. Constraints can be imposed directly by restrict-
ing certain feature values or indirectly via constraints on
certain properties of larger circuit models, or through
generalisation to other morphologies. In this study, we
are interested in the latter, and in particular in defin-
ing a set of models that accurately reproduce the de-
sired firing type on a population of morphologies taking
into account its variability. This facilitates the statisti-
cal analysis of interdependencies between morphological
and electrical properties. It also allows us to address the
question of which morphological features affect electro-
physiological properties. Finally, and most importantly,
this approach allows the generation of a population of
cell models with controlled morpho-electrical variability.

Several attempts to quantify the variability in neu-
ronal parameter space required to ensure the cell re-
mains in a specified firing type have been made in the
past. It started as early as Foster et al. [1993] with
systematic treatments more than a decade later. First,
in Prinz et al. [2003] they build models of Lateral Py-
loric neurons with this sampling approach to bypass the
common hand-tuning of parameters or later in Taylor
et al. [2009] to perform a more in-depth analysis of ion
channels interactions in biophysical neuronal models. In
these works, they randomly sample the parameter space
and subsequently filtered out models with features out
of their prescribed range. Other approaches leveraging
optimisation algorithms such as Achard and De Schut-
ter [2006] for Purkinje cells to understand the shape of
the neuron parameter space were attempted.

Here, we will instead use the Markov chain Monte
Carlo (MCMC) method (see for example [Gilks et al.,
1995]) to sample the parameter space of the electrical
model of rat cortical layer 5 pyramidal cells [Reva et al.,
2022]. This method, already used in a similar context
by [Wang et al., 2022] provides a Bayesian framework
for sampling parameters of the model. It also improves
on random sampling by preventing evaluations of too
many models with wrong firing properties and provides
statistical guarantees that the parameter space is well
sampled with respect to a given probability distribution,
implemented here from the cost function constructed
from electrophysiological features. From these sampled

models evaluated on a single reconstructed morphology,
we develop a method to generalise them to a population
of morphologies inspired from Hay et al. [2013], by ad-
justing surface areas of the axon initial segment (AIS)
and soma based on relative input resistances between
them and the dendrites. With these models, we studied
the morpho-electrical variability of these models, specif-
ically their ability to reproduce experimental variability.

Results
Experimental morpho-electrical variability. We
considered two datasets: 64 morphologically de-
tailed reconstructions of layer 5 pyramidal cells
(L5PC) [Reimann et al., 2022, Markram et al., 2015] and
44 electrophysiological patch clamp recordings of the
same cell type [Reva et al., 2022, Markram et al., 2015].
The L5PC morphologies are classified into four subtypes
according to the properties of the apical dendrite: thick-
tufted, bi-tufted, small-tufted and un-tufted (see Sec. A
and [Kanari et al., 2019]). We will refer to tick-tufted
the subtype denoted as TPC:A in [Kanari et al., 2019].

To illustrate the variability present in the morpholo-
gies of the thick tufted L5PC, we extracted 11 mor-
phological features per dendritic type (see Fig. 1b) and
plotted representative morphologies of the mean, large,
small and exemplar cells (see Fig. 1a). The first three
cells were selected based on their total surface areas,
and the exemplar is the cell with the proximal dendritic
surface area closest to the median profile of the pop-
ulation (see SI. Sec.C). We observed that morpholog-
ical features such as total surface areas, total lengths
or the number of bifurcations shown in Fig. 1a-b vary
from three to five-fold and have various correlations (see
Supp. Fig. 9). These large differences within the thick-
tufted morphological type show that a single morphol-
ogy cannot be a faithful representation of the entire pop-
ulation.

To illustrate the variability of electrophysiological
properties of L5PCs we plotted the distribution of some
of the 61 extracted features in Fig. 1c-d. Features are
extracted from traces obtained during the experimen-
tal application of specific protocols Reva et al. [2022],
Markram et al. [2015], and we chose as an illustration to
use the protocol of 200% rheobase current step. In the
example in Fig. 1c, we selected three recordings from
three cells with different mean frequencies for this step
protocol. The mean frequency range from 5Hz to 14Hz,
a nearly three-fold range. The variability of other elec-
trical features, such as holding current (required current
to hold the cell at −83 mV), threshold current or other
firing properties is also large (see 1d).

Overall, a few correlations are observed between
morphological features (see Supp. Fig. 9, and similarly
for electrical features (see Supp. Fig. 8). For exam-
ple, cells with high mean firing frequency have shorter
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Figure 1: Morphological and electrical variability in thick tufted L5 pyramidal cells. a. Distribution of total
surface areas of thick-tufted layer 5 pyramidal morphologies and four examples with small, mean and large areas as well
as exemplar morphology. Coloured dots on this panel and on panel b correspond to these morphologies. The thick line
is the mean, dash lines are 1sd and doted-dash lines are 2sd of the data (same for all panels). b. Distributions of some
morphometrics related to morphological size and surface area. Refer to Fig. 9 for more morphometrics and correlations
between them. c. Distribution of mean firing frequencies for the 44 recordings of step protocol at 200% threshold current,
with three examples on the right, with small, mean and large mean firing frequencies. Coloured dots on this panel and on
panel d correspond to these recordings. d. Distribution of some other electrical features extracted from the same protocol
as well as the threshold and holding current. Refer to Fig. 8 for more features and correlations between them.

inter-spike intervals (ISI) and the cells with longer api-
cal dendrites have larger apical surface areas. These
observations suggest that, as is the case for morpho-
logical classes [Kanari et al., 2019, 2022], electrical fea-
tures cannot be described purely by a set of linearly
dependent features. In the case of morphologies, sim-
ple morphometrics cannot sufficiently describe the com-
plexity of branching structures [Kanari et al., 2018]
while for electrical features, the non-linear, voltage or
calcium-dependent dynamics of the ionic channel con-
ductances create a complex interplay between ionic cur-
rents Marder and Taylor [2011].

MCMC sampling of electrical models. To repro-
duce the experimental variability of electrical features
in our dataset we built multi-compartmental electrical
models composed of the examplar morphology and a set
of 30 free parameters based on Hodgkin-Huxley mech-
anisms, as described in [Markram et al., 2015, Reva
et al., 2022] (see also Suppl. Sec. D). We then apply
the Markov Chain Monte-Carlo method to sample elec-
trical models in this parameter space as follows.

First, to assess the validity of a given set of parame-
ters p to reproduce a target neuronal type, we compared
the feature values extracted from simulated traces under
specific protocols with the mean and standard deviation
of the same features on the population of experimen-
tal recordings (see Suppl. Sec. D). More precisely, we
computed an absolute z-score for each evaluated feature

and a global cost function as the largest score across
all features. Often, the sum of the scores is used as a
cost C(p) to quantify the quality of an electrical model
(see [Van Geit et al., 2016]). Here, instead, we used the
maximum score as it results in overall better models
by preventing any z-score from growing too large rela-
tive to the others. From the cost function, we defined a
probability function on the parameter space

P (p) ∝ exp

(
−C(p)

T

)
, (1)

parameterised by a temperature parameter T . For lower
T , the generated samples remain around local minima
of the cost function while for larger T the samples
cover more volume with larger costs. In the extreme
of T → 0, we theoretically recover the global minimum,
and T → ∞ leads to a uniform sampling of param-
eters. Sampling from our cost function ensures that
most models have a low cost, with variability similar
to experimental variability. To sample from this distri-
bution, we ran several MCMC chains from random ini-
tial conditions, which we updated using the Metropolis-
Hastings algorithm with multi-variate Gaussian prior
(see Sec. E). The sampling quality was validated with
an acceptance rate above 50% and fast decaying auto-
correlation (see Suppl. Fig. 7).

Using this MCMC sampling method of the param-
eter space, we obtained 273′088 models, from which
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Figure 2: Electrical model generation with MCMC. a. Traces of the step 200% protocol for four models picked
such that the blue has large AP amplitudes, green has small amplitudes while red and magenta have amplitudes around
the median. We refer to Fig. 14 for currentscape plots of these traces. b. Distribution of some feature values of step 200%
protocol for models sampled via MCMC with cost < 4. The thick line is the mean, dash lines are 1sd and doted-dash lines
are 2sd of the experimental data (same for all panels). c. Correlation matrix between features of panel b and parameters
mostly correlated with these features (Pearson > 0.2). d. Density of models for holding current and mean AP amplitude
as a function of their mostly correlated parameters, selected from c. The coloured dots represent the four models in a. e.
Corner plot of model densities with one-dimensional marginals on the diagonal. The grey scales are normalised per pair
of parameters and only the most correlated (MI> 0.03) pairs of parameters are shown. The coloured dots represent the
four models in a. f. Average holding current value over all parameters except for the two mostly correlated parameters
to predict holding current (g̃pas and g̃Ih). g. Average threshold current value over all parameters except the three mostly
correlated parameters to predict threshold current (g̃pas, g̃Ih and axonal g̃Na).

209′653 have costs below our threshold of 5sd. We
checked whether the obtained population of models re-
produced the experimental variability of the electri-
cal features (Fig. 1c-d). Most of the distributions are
centred around the experimental mean (solid lines in
Fig. 2b), except for the mean action potential (AP)
amplitude, inverse time to first AP and mean after-
hyperpolarization (AHP) depths (Fig. 2b). For mean
action potential (AP) amplitude and inverse time to
first AP, as some models are close to the mean exper-
imental value, it could be possible to perform a spe-
cific selection for these features to obtain a distribution
closer to the experimental population. However, for the
mean AHP depth, all models present a smaller value
than the mean experimental value, showing a limitation

of our modelling approach to reproduce this specific fea-
ture.

The large population of models gave us the oppor-
tunity to explore the causal link between the model pa-
rameter values and the feature values. For this reason,
we looked at the correlation between a subset of features
and parameters (Fig. 2c) measured with the Pearson co-
efficient. We found that some features have a large cor-
relation with few parameters (with up to 0.87 between
holding current and g̃Ih in Fig. 2d(top) or 0.68 for mean
AP amplitude and somatic Na in Fig. 2d(bottom)). On
the contrary, other parameters (such as AHP depth)
present low correlations with a large subset of param-
eters (see AHP depth in Fig. 2c). Therefore, AHP
depth is controlled by more parameters than other fea-
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tures, making it intrinsically harder to control. While,
holding current is highly correlated with g̃Ih conduc-
tance,(Fig. 2d(top)), the variability of this feature can-
not be fully explained by the variability in g̃Ih . The
additional variability partially comes from g̃pas, which
is also correlated with holding current (Fig. 2f). In gen-
eral, the variability of feature values depends on the
interplay between several underlying parameters, and
more parameters are required for features related to
spiking (Fig. 2g and 13).

This study of the causal link between parameters
and features allows a refinement of the MCMC sam-
pling. For example, the correlation between the mean
AP amplitude and the maximum conductance of the so-
matic sodium channel (g̃Na) Fig. 2d(bottom) suggests a
way to control the AP amplitude by adjusting the upper
bound of the somatic g̃Na to around 0.15. In this way,
most models will be more centred around the experi-
mental mean (around 68 mV) during MCMC sampling,
thus producing more valid models for the same compu-
tational cost than sub-sampling. We also looked if con-
straining the models below 3sd for all the features pro-
duces the emergence of correlations between parameters
(Fig. 2e). For example, we observed a negative corre-
lation between maximal somatic Na conductances and
maximal axonal Na conductances (as already noticed
in [Schneider et al., 2022]). This correlation is partly
imposed from the constraint AP amplitude. In fact, if
the somatic Na conductance is high, the axonal conduc-
tance has to be low to maintain AP amplitude within
the experimental range. This representation of the ac-
cepted models (constrained by the cost) can be seen as
a global map of the parameter space where valid models
are located (with costs below 5sd). Regardless of their
locations, the models will globally perform equally well
(see Fig. 2a-b) but will contain subtle differences that
can be quantified or controlled with MCMC sampling.

Generalisation of electrical models to a popula-
tion of morphologies. To sample valid models with
MCMC we used a single exemplar morphology assumed
to represent an entire population of morphologies. Since
our original motivation was to obtain a population of
models and morphologies such that any pairs were valid
with high probability, we needed to ensure that our
MCMC models remained valid on the entire popula-
tion of morphologies. First, to check the validity of
models, we used a cost function based on a reduced set
of features, discarding features based on backpropagat-
ing action potentials (bAP), which are sensitive to the
shape and length of the dendrite tree. Then, due to
the large number of models obtained from MCMC, we
began by randomly sampling 100 models with a cost be-
low 3sd (out of 10′678), such that the MCMC density
of models was preserved. This results in models being
more likely to be away from the region of invalid models

in the parameter space, hence possibly more generalis-
able. Indeed, one expects that if a model is close to
the boundary of this region, a change in the morphol-
ogy would affect the effective conductances of the whole
cell, which may bring a cell out of the valid region.

To improve the generalisability of our electrical mod-
els on various morphologies, we adapted the soma and
AIS surface area by computing the relative input resis-
tances between soma, AIS and dendrites. Indeed, as it
was noticed in early works such as [Rall, 1959], or more
recently in [Hay et al., 2013, Reva et al., 2022], the rel-
ative input resistances between the AIS, soma and den-
drites are essential to determine the excitability of the
cell. The important quantities to consider in this con-
text are called ρ factors [Rall, 1959] and are defined as
the ratio of input resistances of specific compartments
as

ρ =
Rin, soma

Rin, no soma
, ρAIS =

Rin,AIS

Rin, noAIS
(2)

where Rin, soma and Rin,AIS are the input resistance
of the isolated soma and AIS compartments, and
Rin, no soma is the input resistance of all the neurites mea-
sured at the soma location (numerically evaluated at the
AIS), but without the soma. Similarly, Rin, noAIS is the
input resistance of the soma and dendrites, without the
AIS. In [Hay et al., 2013], the authors rescaled the max-
imal conductances of the AIS and soma to match the
ρ factors of the optimised cell. Here, we instead con-
sider that the AIS and soma sizes have variability that
can be exploited to improve the generalisation of fixed
electrical models. We thus rescaled the surface area of
the AIS and soma of each morphology such that the ρ
factors match a target value. Our dataset of morpholo-
gies presents 4 morphological types and we extracted
the examplar morphology (based on the median proxi-
mal surface area profile, see SI. Sec. C) for each of these
types. We had to find the target values for ρ and rhoAIS

for each pair between the 100 electrical models and the
4 examplar morphologies. The target ρ values are found
with a grid search on AIS and soma scales for the opti-
mal cost (see Sec. H). We thus have one set of the target
ρ factors per model and per morphological type present
in the population.

We first show how rescaling the AIS and soma size
changes the cost of a model (Fig. 3a) on the four mor-
phologies shown in Fig. 1. We observe that for all mor-
phologies, a reduction of the AIS size leads to a large
increase in cost (clipped at 8sd) while the change of
soma size does not impact the firing pattern (Fig. 3b).
The exact shape of the level set of cells with costs less
than 5sd largely depends on the morphology (Fig. 3a,
the region below 5sd is enclosed in the dashed lines).
For some morphologies, the original AIS and soma size
do not produce a valid model ((Fig. 3a, color dots). In
particular, the region of valid models is small for large
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Figure 3: Generalisation with AIS/soma adaptation. a. Cost of models by varying soma and AIS size for the four
morphologies of Fig. 1a. The region enclosed in dashed lines has a cost below 5sd while that in solid lines has a cost below
6sd. The dot shows the location of the cell with unscaled AIS and soma. b. Step traces of the large morphology with fixed
soma (left) and AIS (right) scale but with varying AIS (left) and soma (right) scales. c. The model validity region with
cost of 5sd (dashed) and 6sd (solid) of panel a is mapped to the ρ factor plane. The dots again represent the unit AIS and
soma scales while the black cross is the location of the best model obtained by minimising the cost from the exemplar with
the grid search in panel a, bottom right. d. Histograms of feature values on all pairs of electrical models and morphologies
with (black) and without (blue) soma and AIS adaptation. The thick line is the mean, dash lines are 1sd and doted-dash
lines are 2sd of the experimental data. e. ρ and ρaxon as a function of the g̃pas and g̃Ih parameters.

cells but large for small cells. By converting the AIS
and soma scales to ρ factors (Fig. 3c) we confirm that
the target ρ factors (black cross) obtained from the ex-
emplar cell are within, or close to the validity region
of other morphologies. If the cells are too different,
such as our small and large morphologies (see Fig. 1a),
their validity region in the ρ factor plane may not over-
lap for both to work with a single target ρ factor. As
this overlap depends on the electrical model, it defines
its generalisability on a population of morphology (see
next section).

For each model, we obtained target ρ factors us-
ing the examplar morphologies and we used the targets
to fit the AIS and soma size of each morphology (see
Sec. H). These adapted cells have a clear reduction of
extreme values of features as compared to non-adapted
cells (Fig. 3d), and in particular for threshold current,
where 7.4% of the cells have a threshold above 5sd with-
out adaptation while only 1.1% of cells are above 5sd
after adaptation. As ρ factors are based on input re-
sistance, they are highly sensitive to the passive leak

and Ih channels densities (Fig 3e). It should therefore
be possible to predict the target ρ values directly by
looking at these parameters instead of computing the
AIS and soma scaling on the examplar morphologies.
To demonstrate it, we fitted a regressor learning model
(see Sec. J and H) to predict the values of ρ factors
from the model parameters and achieve a 10-fold accu-
racy for the prediction of ρ of 1.36 ± 0.34 and for ρAIS

of 27.5 ± 8.6. As described in the next section, this
AIS/soma adjustment, which corresponds to some ar-
tificially controlled variability, is important to ensure a
model generalises to a population of morphologies with
substantial variabilities.

Morpho-electrical selection and variability.
Even with AIS and soma adaptation, it is not guar-
anteed that all pairs of models and morphologies will
work together. For example, the morphology with the
smallest area (blue colour Fig. 3.c ) is close to the non-
valid regime. It is possible that a better choice of the
target ρ factors exists, but given our current algorithm
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based on a single exemplar morphology, the success rate
for model morphology pairs is satisfactory, as shown in
Fig. 4a. We distinguish three levels of models: valid
models (light grey), models for which some features
with scores larger than 5sd (grey) and models where
the search for threshold current failed, hence they do
not spike during step protocols (black) (Fig. 4a). By
sorting the electrical models from the less generaliz-
able (failing when applied to a lot of morphologies) to
the most generalizable (produce good cells for all the
morphologies), we were able to select a large fraction
of morphologies and electrical models (delimited with
orange lines) such that most pairs have a cost below
5sd. In Supp. Fig. 15a, we show the same selection
matrix without adaptation, which needs a more drastic
selection of models and morphologies.

Given the morphological variability of our popula-
tion of pyramidal cells, we can investigate the relation-
ships between some global morphometrics and gener-
alisable cell models. For example, the proximal (up
to 500µm) surface areas of selected (black) and non-
selected (orange) morphologies is a good predictor of
the number of failed models, of model generalizability
(see Fig. 4b). In fact, best morphologies (i.e that failed
with a small number of electrical models) have surface
areas close to the exemplar morphology, while most dis-
tant morphologies (with large or small surface areas) are
much less generalisable (they failed with a large number
of electrical models). This result indicates the range of
proximal surface areas of morphologies that can be gen-
eralisable from a single exemplar morphology. We also
show the same result without adaptation where the re-
gion of validity is below the exemplar ( Suppl. Fig. 15b).
If the largest cells are important for a given study, two
choices are possible. One can recalibrate the ρ factors
using a larger exemplar morphology, or, if this is not
sufficient, run MCMC sampling again to produce an-
other set of models. The second choice will arise only
for extreme morphological differences where the valid
regime in the parameter space is not reached with the
MCMC sampling based on the first exemplar.

In this context, we ask whether it is possible to
predict if an electrical model is generalisable from the
parameter values. From inspecting parameter distri-
bution between each set of models (generalisable and
not generalisable) there are no evident differences (not
shown), but when training a machine learning classifier
(see Sec. J), the 10-fold accuracy reaches 0.89 ± 0.08,
showing that it is possible to accurately predict the gen-
eralisability of a model on a given population, but only
via nonlinear, higher-order combinations of parameters.
In Fig. 4c, we show the values of the main parameters
involved in predicting the generalisability of models on
the population of morphologies. We found that small
passive and axonal Na conductance and large Ih con-
ductances are more likely to produce non-generalisable

models.

Finally, from this population of models and mor-
phologies, we assessed how well they match the vari-
ability of the experimental data (Fig. 1), and in par-
ticular, the morphological or electrophysiological vari-
ability alone is sufficient to reproduce the experimental
variability. For this, we fixed a model and compared
the distributions of the features when evaluated on all
selected morphologies (Fig. 4d), red dots). We found
that, for this specific electrical model, the morpholog-
ical variability is not sufficient to explain the experi-
mental features variability. In fact, we can see that
for features such as holding current, AP amplitude or
time to first AP, distributions of features obtained by
modification of morphology are less variable than ex-
perimental features (Fig. 4d, the thick line is mean, the
dashed line is 1 sd and the dotted dashed line is 2sd of
experimental data). Then, we fixed a morphology and
compared the distributions of the features when eval-
uated on all selected electrical models (Fig. 4d, green
dots). Fixing a morphology seems to produce more
consistent variabilities across features, except for AHP
depth, which is biased towards low values already in
the MCMC sampling. Therefore, the experimental vari-
ability of electrical features seems to mostly arise from
the variability of the ion channel densities in the pop-
ulation. We finally looked at the feature distributions
when testing all the pairs between selected morphologies
and selected electrical models ((Fig. 4d), black dots)
and found an even larger feature variability, showing
that combining both morphological and electrophysio-
logical variability is important to reproduce experimen-
tal variability. In order to quantify these variabilities,
we compared these distributions with the experimen-
tal data with the Levene statistical test (centred with
mean) (Fig. 4e) by fixing all morphologies (green) or
all models (red). We found with this procedure, more
feature distributions presented a p-value for the Levene-
test smaller than 0.05 with a fixed electrical model than
with a fixed morphology, consistent with the results in
panel d. Finally, the black dots show the comparison be-
tween experimental feature distributions and distribu-
tions when testing all the 5197 pairs between electrical
models and morphologies which all have p-values above
0.05 (distributions not distinguishable from the exper-
imental one) but for the mean AHP depth. Therefore,
applying MCMC sampling, soma and AIS scaling by
ρ factors procedure and selection of generalizable elec-
trical models and morphologies, allowed us to build a
population of models that reproduces the variability of
the features found in a neuronal population.

Further generalisations From MCMC sampling, we
only selected 100 models to perform AIS/soma adapta-
tion to create a set of valid pairs of electrical models and
reconstructions. This was primarily due to the compu-
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Figure 4: Morpho-electrical selection and variability. a. Selection matrix for thick-tufted cells where selected
models and morphologies are delimited with the orange line. Each pixel corresponds to a model, where models in light
grey have scores below 5sd, in grey have some features with costs higher than 5sd and in black pixels are models which
do not spike. The four morphologies of Fig. 1 are represented with coloured ticks, and the model of Fig. 4 with a black
tick. We refer to Supp. Fig. 15 for the same selection matrix without AIS and soma adaptation. b. Proximal (up to
500µm) dendritic surface areas for all morphologies with non-selected morphologies in orange versus the number of failed
models for each morphology. The four morphologies are also highlighted with coloured crosses. c. From the classification
of selected models from their parameters with a classifier algorithm (10-fold accuracy of 0.89± 0.08), three parameters are
most important, with a clear correlation. Models with small g̃pas values also contain models for which we have not been
able to fit the AIS/soma resistance model (not shown in a). d. Distribution of features obtained by freezing the black
model (57 points in red), the exemplar morphology (75 points in green) or 500 models randomly sampled from the 5197
total pairs with cost < 5 (in black). The red line corresponds to the value of the black model with exemplar morphology.
The thick line is the mean, dash lines are 1sd and doted-dash lines are 2sd of the experimental data. e. p-value of Levene’s
test centred with mean. Each dot is the p-value of this test between the experimental data shown in Fig. 1 and all MCMC
models with cost < 3 in black, subsets of models in red and morphologies in green. The distributions per feature in panel
d corresponds to single points in this plot.

tational cost of calibrating the ρ factors and evaluat-
ing all the models on morphologies to select them. By
using standard tree-based machine learning regressors
and classifiers (see J) we fitted models for the ρ factors,
the AIS/soma resistances and model generalizability, we
were able to use more models from MCMC sampling
with reduced computational cost. In total, we evaluated
13794 new pairs of selected morphologies and sampled
models where 92.8% have cost below 5sd (as light grey
pixels in Fig. 4a) and 98.9% that are able to fire (as
grey pixels in Fig. 4a). Once calibrated, our method of
adapting the soma and AIS can be applied to models
sampled with MCMC not yet used and produce a larger
number of generalisable models without the need for ex-
pensive calibration and validation of ρ factors and fully
leverage the variability created by MCMC sampling for
statistical analysis or circuit building.

Increasing the number of models is often not suffi-
cient to capture the entire biological variability, espe-

cially if experiments involve inter-neuron connectivity
or synaptic inputs. For this, one could use more recon-
structions if they fall within the estimated valid surface
area bounds, or leverage neuronal synthesis algorithms.
Here, we generated morphologies with the algorithm
of [Kanari et al., 2022] based on the topological descrip-
tor introduced in [Kanari et al., 2018] (see SI. Sec. K) to
show that if morphologies fall within the original popu-
lation, there is a high probability that they will perform
well on all selected models. We found that 94.8% of the
generated pairs from 100 synthesised morphologies had
a cost below 5sd, but only a few with small oblique
surface areas were consistently failing. This suggests
that some specific morphological features should also
be taken into account to refine how morphologies are
classified to produce consistent populations for electri-
cal modelling.

In this work, we focused exclusively on layer 5 pyra-
midal cAD cells, but in Supp. Fig. 12 and SI Sec. L,
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we show the application of MCMC and generalisa-
tion on another electrical type, the continuous non-
accommodating interneuronal types. We found simi-
lar properties to the cADpyr models, whereby MCMC
captures non-trivial parameter correlations, small mor-
phologies are harder to generalise but from the selected
set of morphologies and models, we are able to generate
more valid models. Our approach of MCMC sampling
and further model and morphology selection thus works
on any electrical types, provided sufficient features are
available and can be used to construct models with con-
trolled variability for several electrical types, for inter-
type comparisons or building more realistic microcir-
cuits.

Discussion
In this work, we present a framework to study de-

tailed biophysical models of neurons. In particular,
we take into account the experimental variability of
morphologies and electrophysiological features within
cell types. For this, we leveraged a standard statis-
tical method, MCMC, to generate thousands of electri-
cal models reproducing experimental variability, and we
generalised them to a population of detailed reconstruc-
tions of morphologies by adjusting AIS and soma size
according to calibrated ρ factors.

With this approach, we produce a population of
models with feature variability close to experimental
data and we demonstrate that morphological variability
alone is not sufficient to reproduce the observed elec-
trical behaviour. The variability of electrical models as
measured by the feature values is a direct consequence of
the parameter variability [Marder and Goaillard, 2006].
In order to ensure that the feature variability matches
the experimental data, strong constraints are necessary
on the model parameter space, which is possible to be
analysed with MCMC samples. The study of these
constraints is out of the scope of this study but pre-
liminary analysis indicates that a few constraints are
low-dimensional, while many are high-dimensional, in
particular for complex features such as average after-
hyperpolarisation depth during a step protocol. These
constraints on the parameter space are a result of the
choice of protocols and features. Thus to obtain more
specific models, reproducing more specific firing, such as
BAC firing [Larkum et al., 1999, Hay et al., 2011], even
stronger constraints are most certainly required such as
more specific apical ion channels. Hence, such MCMC
sampling methods, or improvements of them [Wang
et al., 2022], provide a tool to detect model limitations
and investigate their origins.

The study of model generalisability on a population
of morphologies suggests a new morphological grouping
based on specific morphological features, related to their
electrical activity. Given an exemplar with calibrated ρ

factors, we find that the proximal dendritic surface area
(i.e. up to around 500µm including basal and oblique
dendrites) is a good predictor for the validity of the mor-
phology on that model. However, other more specific
morphological features, such as oblique dendrite areas,
also have an impact, as was discovered with synthesised
morphologies in Sec. K. As such morphological features
do not necessarily correlate with more generic classifi-
cations involving specific apical features (tuft, no-tuft)
or axonal ones (mostly for inter-neurons), it may be
possible to create more targeted morphological types of
neurons based on these to ensure that all morphologies
of a specific type will perform well with a single set of
ρ factors.

Overall, this work proposes a new perspective on
building detailed electrical models of neurons with
Bayesian statistics via the MCMC method. We show
that we can unravel subtle mechanisms via the study
of parameter and electrical feature correlations while
providing a consistent framework to assess the qual-
ity of electrical models by controlling their variability
on a single morphology or for a population with its
own morphological variability. This work opens fur-
ther research avenues to study the interplay between
electrical models and morphologies, co-regulation [Yang
et al., 2022], energy efficiency [Bast and Oberlaender,
2021, Jedlicka et al., 2022], the impact of morpho-electro
variability in circuit simulations ( [Prinz et al., 2004,
Marder and Goaillard, 2006, Goaillard et al., 2009])
or links with gene expressions Bernaerts et al. [2023].
In addition, MCMC sampling of electrical models may
become instrumental in making progress on the long-
standing question of redundancy and synergy in biol-
ogy, and in particular, in neurons [Marder and Taylor,
2011, Marder, 2011].
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Supplementary information

A Morphology dataset
We use the layer 5 pyramidal morphology dataset of [Reimann et al., 2022, Reva et al., 2022], which is an

extended version of the one from [Markram et al., 2015]. It consists of four subtypes, with 64 thick tufted cells,
38 bi-tufted cells, 30 small tufted cells and 27 un-tufted cells as defined in [Kanari et al., 2019].

B Diametrization algorithm
The input to the algorithm is a population of morphologies, and it will be applied to a single type of neurite

(basal and apical). For each section of morphology, we compute the path distance from its end to the downstream
terminal point that is furthest away (see Fig. 6a. We then normalised these values by the largest path length
of the morphology. We also record the section mean diameters and fit a polynomial function of diameter as a
function of the distance, which will be our diameter model, see Fig. 5e.

The diametrization of a given morphology then first uses this model to assign a diameter to each section
independently. It then introduces a linear tapering of diameters along each section such that the first diameter is
the assigned one, and the last is the average between the first of the current section and the largest first diameter
of child sections. If the section is a terminal section, we read the last diameter from the model.

In Fig. 5b we show two examples of rediametrized morphologies, where the left morphology has similar
diameters, and the right one has reduced diameters. In Fig. 5d we show the changes of surface areas induced
by the rediametrization, mostly affecting the large surface areas (such as for the right morphology), but overall
making the distribution of dendritic surface more narrow.

The diametrization algorithm is implemented in the open-source python package https://github.com/

BlueBrain/diameter-synthesis.

C Exemplar morphology
From a population of morphologies, we select an exemplar morphology as follows.
We compute the average surface area of the soma, computed by neuron for greater consistency with Neurolucia

format in Fig. 6a as well as the average radius in Fig. 6b. We then create a single cylindrical compartment with
an average radius and length computed such that the surface area is also the average from the population.

We extract the diameters of the first 60µm of the reconstructed axons (see Fig. 6c), assumed to be the AIS of
the neuron and use the average diameter to create a two-compartments model of the AIS with constant diameter.
We ignore the tapering near the soma, which does not affect significantly the electrical features (not shown).
We then discard the reconstructed axons as we do not electrically model them in detail but replace them with a
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reconstructed points of the first sections of the axon, interpreted as AIS diameters. In green is the average AIS diameter
of the first 60µm used for the exemplar. d. Proximal surface area profile of all dendrites, computed with 50 bins in path
distance. The median profile is in black, and the closest to it is the choice of exemplar dendrites (in green).

constant diameter AIS of length 60µm followed by a 1 mm myelinated section. The AIS will serve to generate
action potentials, and the myelinated section will act as a sink, as an approximation of the effect of removed
axonal branches.

In addition, we need to select a morphology that is most representative of the population. As most experimental
protocols and recordings we will use are somatic, electrical models will be most sensitive to the proximal surface
area of dendrites. We compute the total surface area of all dendrites as a function of path distances in Fig. 6d,
compute the median profile and select the morphology closest to use as exemplar dendrites. We apply this
procedure to construct a global exemplar morphology from all L5 PC cells which we will use for MCMC sampling.
We also create m-type specific exemplars where the dendrites are selected using only morphologies within this
m-type, for ρ factor calibrations.

D Electrical models and cost function
We use the model of [Reva et al., 2022], based on the ones from [Markram et al., 2015]. They are composed

of a set of coupled nonlinear equations assigned to each compartment in a morphology. For each compartment,
a subset of these equations is parametrized by properties such as radius and lengths and coupled to the adjacent
compartment via current conservation condition [Hines and Carnevale, 1997]. All dynamical equations are of the
form

du

dt
= −

∑
k

Ik(u, t) + I(t) , (3)

where u is the membrane potential, I(t) the applied current and Ik the various ionic currents indexed by k,
non-linearly depending on the voltage.

Several protocols defining I(t) are applied on the soma and recorded in the soma or along specific dendrites.
These protocols are the same as in [Reva et al., 2022], where the most important is the step protocols with
amplitude relative to the rheobase of the cell. The rheobase is found with a bisection search, where the lower
bound is the holding current, defined as the current to hold a cell at −83mV and the current to be at −30m,
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estimated from the input resistance. The holding current is also found from a bisection search, which, as for the
threshold, is terminated once a certain accuracy on the current is reached (difference between the last upper and
lower bound). If the threshold current is above −30mV , we assume that the cell cannot spike, thus subsequent
protocols are not evaluated, and the cost of the model is maximal. From these voltages (or other ion channels)
recordings, a number of features, such as mean AP amplitude and AP frequency are extracted, as in [Reva et al.,
2022].

Only a subset of all features is used for analysis steps after performing MCMC. In particular, we discard bAP
features, which are too sensitive to apical diameters, and APWaveform where the second AP may not happen
due to too short step protocol, SpikeRec because it is related to recovery after a spike, which we do not consider
here and IV.

Denoting the simulated k feature values as a vector f = (f0, . . . , fk), the parameters as p = (p0, . . . , pn) as
and construct a cost function to measure the model quality as

C(p) = maxi

∣∣fi(p) − fexp,i
∣∣

σ(fexp,i)
= maxizi(p) , (4)

where zi are the absolute z-scores of each feature indexed by i. Notice that we define the cost as the max of
the scores, which is stronger than the sum of the score usually used in optimisation [Van Geit et al., 2016]. In
addition, each parameter is assigned a predefined range of possible values, possibly consistent with biological data
if any are available.

E MCMC sampling of models
All parameters have normalised versions denoted by p̂, such that the available range is [−1, 1], and no bias is

induced by the various possible units or bound sizes of each parameter. The parameter space for a valid electrical
model is thus a subspace Ω of the hypercube [−1, 1]n defined as p ∈ Ω if and only if C(p) < C∗, where C∗ is a
maximum cost to consider a model valid.

To generate many set of parameters to cover this set Ω, we use the MCMC method with the Metropolis-
Hastings algorithm as follow. We define a probability distribution from the cost function as

P (p) ∝ exp

(
−C(p)

T

)
, (5)

where T is a temperature parameter. The goal of MCMC is to sample from this distribution. For this, we use
a normal prior distribution π(p̂) = N(p̂, ϵ)n with variance ϵ. Because the parameter space is a hypercube, if
the proposed set of parameters lies outside, we re-sample until we get a point inside the hypercube. For each
chain, we then sample a random point p̂0 in the hypercube, and compute the next point in the chain using the
Metropolis-Hastings algorithm:

1. propose p̂i+1 ∼ π(p̂i),

2. draw a ∼ U(0, 1),

3. accept p̂i+1 if P (p̂i+1)
P (p̂i)

≥ a, else reject and set p̂i+1 = p̂i,

4. repeat until number of iterations is attained.

In practice, we launch several chains for a short so-called burn-in phase so that enough chains have reached
the valid region Ω. We then restart new chains from a selection of best models obtained in the burn-in phase, see
Fig. 7a. To obtain our final set of parameters in Ω, we remove samples with C > C∗. The parameter ϵ should
be set such that the acceptance rate is around 60 − 80% depending on the chain, to ensure we optimally explore
P (p) correctly. The convergence plot in Fig. 7a shows the burn-in phase and the longer run, with a uniform
sampling of cost values across iterations. In addition, the auto-correlation plot for this run in Fig. 7b shows fast
decay of correlations after less than 50 iterations, which gives an indication of the minimum number of steps one
should do to have a good sampling In Fig. 7c, we show for each feature the fraction of time it is the largest, so it
defines the cost. A more uniform distribution shows that no features are primarily blocking the chains to reach
low-cost values.

Overall, MCMC sampling can also be used as a tool to improve electrical models. Indeed, the corner plots and
one-dimensional marginals such as shown in Fig. 2e is useful to adjust parameter bounds. If many good models
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Figure 7: MCMC additional figures a. Cost convergence for burn-in and main MCMC run. Red dots correspond to
the initial costs of each chain, grey lines are the chain costs trajectories, and blue dots correspond to the final cost when
the chain was stopped after 500 iterations. The x-axis corresponds to the accepted iterations, thus the horizontal scatter
of blue points represents the variability in acceptance rates and an average acceptance rate of around 60%. The left and
right panels are respectively the distributions of costs for the burn-in phase (left middle panel) and main MCMC run (right
middle panel). b. Auto-correlation of all the chains in grey, and 10 chains in blue. Horizontal lines show significance
intervals, as defined in Panda’s auto-correlation plot function. c. Distributions of scores saturating the cost for all models
with costs < 5 (marked with a horizontal black line in panel a).
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are near the upper bound of a parameter, one could increase it (if the value remains meaningful) to maybe obtain
even better models. On the contrary, if the distribution is very narrow towards small values, reducing the bounds
will improve the acceptance rate of the MCMC sampling. The study of correlations between features (see Sec. F)
may also be of interest to detecting the possible lack of feature parametrisability of the model, resulting in a
limitation of the lowest possible scores achievable. With the addition of plots such as Fig. 7c which indicates
which features saturate the cost more often, or even with plots of traces for some specific models, MCMC sampling
provides can be effectively used to propose improvements on the choice of ion channel mechanisms or associated
parameter bounds.

F Correlations of features
In Fig. 8a, we compare the feature correlation computed with mutual information between experimental

data (see Fig. 1) and MCMC sampling (see Fig. 2)l showing a good agreement. For example, the inter-spike
interval correlation is stronger in MCMC than in the data, possibly due to experimental noise not present in our
simulations. The correlation between mean frequencies is also higher in MCMC sampling, thus IF curves will
have more consistent slopes among MCMC models than experimental data. In Fig. 8b we show some of these
correlations via scatter plots of experimental and numerical data. In these plots, some experimental outliers
(crosses) were detected and removed to compute the mutual information, as they biased the results substantially.
It may therefore important to perform such analysis of the experimental data to detect any possible outliers which
may not be visible in one-dimensional distributions. In addition, these outliers are few but correspond to stuck
cells, thus having stuck cells in the model may be allowed in small numbers, from a pure data point of view.
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Figure 8: Correlations of experimental and MCMC features. a. Correlations (Mutual information) between
features in experimental data (blue) and MCMC samples (black) for all samples with costs < 3. b. Scatter plots between
some pairs of features, showing differences and similarities between experimental data and the MCMC sampling. Outliers
have been discarded to make a correlation matrix.

In Fig. 9, we perform a similar analysis but on morphological features of reconstructed and synthesised
morphologies (see Sec. K). The pairwise correlations of the selected feature show a good agreement between both
sets of morphologies, where only a few features are strongly correlated.
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Figure 9: Correlations of morphological features. a. Correlations (Mutual information) between some morphological
features in reconstructed (blue) and synthesised (black) morphologies. b. Scatter plots between some pairs of features.
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G Soma and AIS input resistance models
To adapt the size of soma and AIS according to the ρ factors, which are based on input resistances, we need to

model the input resistance of isolated soma and AIS as a function of their sizes. For each model, we evaluate the
input resistances as a function of the soma and AIS scales from 0.1 to 10 and perform a polynomial fit of order 3
on this data in log-log see Fig. 10a,b, resulting in four parameters per electrical model for both the AIS and soma.
In Fig. 10c-h we show the parameters mostly correlated with the first three fit parameters (the fourth is also
correlated with g̃Kv3.1), found by searching for model parameters with Pearson above 0.7 with the fit parameters.
We remark that the passive currents control the affine part of the input resistances of these compartments, while
the Kv3.1 current controls its deviation slope and possible deviations from a linear relation.

Sometimes, the computation of these input resistance models fails, either due to simulation issues, or poor
polynomial fits. In this case, we discard the electrical model for later use. These cases happened more frequently
for low models with low passive conductances, where other channels have more prominent effects, making the
input resistance relation with the AIS and soma size more complex.

H M-type specific rho factors
To find optimal ρ factors we use the exemplar morphology for each m-type and scan for AIS and soma scales

from 0.5 to 1.5 in 10 steps and smooth the scores (with reduced feature set) with a Gaussian kernel of 0.1 width,
to obtain a matrix such as in Fig. 3, but with lower resolution for computational efficiency. The point of the
lowest score is selected as the target scale for each pair of m-type/electrical models (as the black cross in Fig. 3c),
which are then converted to ρ factors and stored to later adapt the AIS/soma.
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Figure 10: Soma and AIS input resistance models. a AIS input resistances for model (blue) used in Fig. 3 and
a cubic polynomial fit (orange). b Somatic input resistances for model (blue) used in Fig. 3 and a cubic polynomial fit
(orange). c-e Mostly correlated model (normalized from −1 to 1) parameters with the first three fit parameters for the AIS
resistance model. Black lines are 10 and 90 percentile on the parameter values. f-h Mostly correlated model parameters
with the first three fit parameters for the soma resistance model. Black lines are 10 and 90 percentile on the parameter
values.

I AIS/soma adaptation algorithm
To adapt the AIS and soma size to match the target ρ factors estimated in Sec. H, we use an iterative algorithm

as follows. First, we adapt the AIS size after evaluating the input resistance of the dendrites and soma and using
the polynomial fit of the AIS resistance model to assign an AIS scale. We then do the same for the soma, with
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input resistance computed with dendrites and scaled AIS. We repeat this two times to ensure that the scales of
AIS and soma have converged. We do not require a precise convergence to the target rho factor because it has
been calibrated with a small resolution for computational efficiency (see Sec. H) and nearby values are also likely
to work equally well. Nevertheless, this two-step algorithm converges to ρ factors values at around a few per cent
of the target.

J Further generalisation with machine learning classifiers and regres-
sors

Due to the computational cost of searching for target ρ factors for each electrical model and fitting input
resistance models of the AIS and soma, we cannot use too many sampled models from MCMC. Hence, to further
expand the pool of models, we leverage machine learning algorithms to estimate these values.

For that, we use gradient boosting tree-based learning algorithm xgboost [Chen and Guestrin, 2016] with the
classifier or regressor and default parameter from the python implementation. We used default parameters and a
learning rate of 0.1 and report the accuracies computed with 10-fold validations with 5 randomised repeats.

First, to learn a model of input resistances, we apply the xgboost regressor on the normalized model parameters
with Pearson correlation larger than 0.7 (shown in Fig. 10c-h), to prevent any overfitting. If no parameters are
correlated enough, we replace the model with the mean value of this parameter. On a new set of models, we then
evaluate these models to estimate the input resistance polynomials for both AIS and soma. To prevent our ML
model to extrapolate the values, we sub-sample models so that their parameters are between the 10’s and 90’s
percentile of the trained set (black lines in Fig. 10c-h).

We train the same regressor model to predict the ρ factors with normalized model parameters that have a
Pearson correlation larger than 0.4 with the ρ factors. The choice for this lower correlation is from the fact that
the calibration of the ρ factors is based on a coarser scan of the parameter space, hence it is noisier and we do not
expect very high correlations. Again, if no parameters are correlated enough, we replace the model with the mean
value of this parameter. One the additional models, we again use these ML models to predict their ρ factors, but
only if their parameters land between the 10’s and 90’s percentile.

Finally, we use the xgboost classifier with the same parameters as previously to estimate electrical model
generalisation from their parameter values. Using the Shap feature important analysis [Lundberg and Lee, 2017],
we could find the most important parameters to predict the model’s generalisation, shown in Fig. 4c. We then
used only models that this classifier predicts as generalisable to test whether our ML calibration produces valid
models (see Sec. ). We used all normalized model parameters to train this classifier, likely overfitting the results,
but without much impact.

K Increasing morphological variability with neuronal synthesis
In addition to generating many electrical models of a given cell type reproducing experimental data, we can

generate morphologies reproducing experimental data for a morphological type. This can be done with neuronal
synthesis algorithms trained from the selected population of reconstructions. Several algorithms are available,
such as [Luczak, 2006, Koene et al., 2009, Luczak, 2006] but we will use here the more recent, topologically based
algorithm of [Kanari et al., 2022]. We generated 100 thick-tufted morphologies for which we adapted the AIS and
soma scales for each selected model, and evaluated all pairs of synthesised morphologies and models.

First, in Fig. 9, we confirm from [Kanari et al., 2022] that the experimental morphological variability is well
reproduced and in particular the correlations between some main morphometrics. After the evaluation, we find
that 94.8% of the pairs of morphologies and models have cost below 5sd and 98.7 have cost below 10sd. In Fig. 11,
we show a more detailed analysis of this result, and in particular that only 3 morphologies are responsible for
a large part of the costs above 10sd. After further inspections, we found that the surface area of the oblique
dendrites is a good predictor of the failure of the morphology on many models. We leave a more detailed analysis
of the mechanistic reasons for such a correlation for future works, but it shows that some specific aspects of the
branching structure may matter for electrical modelling, even when measured at the soma.

L cNAC electrical model
To show that the MCMC methodology and results also apply to other types of electrical models, we used the

continuous non-accommodating (cNAC) electrical model of [Markram et al., 2015, Reva et al., 2022].
In Fig. 12 we show the main results of MCMC and generalisation on Martinotti cells. The exemplar was chosen

based on m-types with most reconstructions, with a total of 191 interneurons and 6 mtypes (L23 LBC, L5 MC,
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Figure 11: Generalisation with synthesised morphologies a Selection matrix with selected models and synthesise
morphologies generated from selected morphologies. Grey pixels correspond to scores above 5 and black for scores above
10. White correspond to scores below 5. b For each morphology, we compute the total surface areas of obliques, which is
a good predictor of failed morphologies. c We show a zoom on the oblique region of a failed morphology. d Similar zoom
as in c but for a working morphology.
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Figure 12: cNAC electrical model a Corner plot of most correlated parameters of an MCMC run on cNAC electrical
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L4 LBC, L23 MC, L1 HAC and L4 NBC). The exemplar for MCMC (Fig. 12a) was an L23 MC (Fig. 12b, left)
and we illustrate in Fig. 12c,d the generalisation on L5 MC cells.

We also applied the generalisation procedure with ML models of ρ factors and AIS/soma input resistance to
obtain 87.1% of the 7620 evaluated pairs with a score below 5sd, and 98.7% then were able to spike.

As seen from the corner plot, we did not attempt to adjust the bounds of the parameter space precisely in
this example, but more work could be done to refine this interneuron model to perform comparisons with other
electrical types.
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without adaptation of AIS/soma.
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