Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the similarity between aortic and carotid pressure diastolic decay: a mathematical modelling study
 
research article

On the similarity between aortic and carotid pressure diastolic decay: a mathematical modelling study

Bikia, Vasiliki  
•
Rovas, Georgios  
•
Anagnostopoulos, Sokratis  
Show more
July 4, 2023
Scientific Reports

Aortic diastolic pressure decay (DPD) has been shown to have considerable pathophysiological relevance in the assessment of vascular health, as it is significantly affected by arterial stiffening. Nonetheless, the aortic pressure waveform is rarely available and hence the utility of the aortic DPD is limited. On the other hand, carotid blood pressure is often used as a surrogate of central (aortic) blood pressure in cardiovascular monitoring. Although the two waveforms are inherently different, it is unknown whether the aortic DPD shares a common pattern with the carotid DPD. In this study, we compared the DPD time constant of the aorta (aortic RC) and the DPD time constant of the carotid artery (carotid RC) using an in-silico-generated healthy population from a previously validated onedimensional numerical model of the arterial tree. Our results demonstrated that there is near-absolute agreement between the aortic RC and the carotid RC. In particular, a correlation of similar to 1 was reported for a distribution of aortic/carotid RC values equal to 1.76 +/- 0.94 s/1.74 +/- 0.87 s. To the best of our knowledge, this is the first study to compare the DPD of the aortic and the carotid pressure waveform. The findings indicate a strong correlation between carotid DPD and aortic DPD, supported by the examination of curve shape and the diastolic decay time constant across a wide range of simulated cardiovascular conditions. Additional investigation is required to validate these results in human subjects and assess their applicability in vivo.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.51 MB

Format

Adobe PDF

Checksum (MD5)

8614785d6645f13aba3b0f335041fed7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés