Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Trapping Layers Prevent Dopant Segregation and Enable Remote Doping of Templated Self-Assembled InGaAs Nanowires
 
research article

Trapping Layers Prevent Dopant Segregation and Enable Remote Doping of Templated Self-Assembled InGaAs Nanowires

Huang, Chunyi
•
Dede, Didem  
•
Morgan, Nicholas  
Show more
July 4, 2023
Nano Letters

Selective area epitaxy is a promising approach to definenanowirenetworks for topological quantum computing. However, it is challengingto concurrently engineer nanowire morphology, for carrier confinement,and precision doping, to tune carrier density. We report a strategyto promote Si dopant incorporation and suppress dopant diffusion inremote doped InGaAs nanowires templated by GaAs nanomembrane networks.Growth of a dilute AlGaAs layer following doping of the GaAs nanomembraneinduces incorporation of Si that otherwise segregates to the growthsurface, enabling precise control of the spacing between the Si donorsand the undoped InGaAs channel; a simple model captures the influenceof Al on the Si incorporation rate. Finite element modeling confirmsthat a high electron density is produced in the channel.

  • Details
  • Metrics
Type
research article
DOI
10.1021/acs.nanolett.3c00281
Web of Science ID

WOS:001022887500001

Author(s)
Huang, Chunyi
•
Dede, Didem  
•
Morgan, Nicholas  
•
Piazza, Valerio  
•
Hu, Xiaobing
•
Morral, Anna  
•
Lauhon, Lincoln J.
Date Issued

2023-07-04

Publisher

AMER CHEMICAL SOC

Published in
Nano Letters
Volume

23

Issue

14

Start page

6284

End page

6291

Subjects

Chemistry, Multidisciplinary

•

Chemistry, Physical

•

Nanoscience & Nanotechnology

•

Materials Science, Multidisciplinary

•

Physics, Applied

•

Physics, Condensed Matter

•

Chemistry

•

Science & Technology - Other Topics

•

Materials Science

•

Physics

•

nanowire growth

•

remote doping

•

atom probetomography

•

modeling

•

electron-mobility

•

si

•

diffusion

•

single

•

gaas

•

silicon

•

photodetectors

•

transistors

•

mechanism

•

emission

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMSC  
Available on Infoscience
July 31, 2023
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/199468
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés