Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. High-affinity peptides developed against calprotectin and their application as synthetic ligands in diagnostic assays
 
research article

High-affinity peptides developed against calprotectin and their application as synthetic ligands in diagnostic assays

Diaz-Perlas, Cristina  
•
Ricken, Benjamin
•
Farrera-Soler, Lluc  
Show more
May 17, 2023
Nature Communications

A peptide was developed that binds to calprotectin, a marker of major inflammatory disorders, and found to be suited for diagnostic tests. The use of synthetic peptides in assays is of great interest due to their high precision, robustness and low price.

Common inflammatory disorders such as ulcerative colitis and Crohn's disease are non-invasively diagnosed or monitored by the biomarker calprotectin. However, current quantitative tests for calprotectin are antibody-based and vary depending on the type of antibody and assay used. Additionally, the binding epitopes of applied antibodies are not characterized by structures and for most antibodies it is unclear if they detect calprotectin dimer, tetramer, or both. Herein, we develop calprotectin ligands based on peptides, that offer advantages such as homogenous chemical composition, heat-stability, site-directed immobilization, and chemical synthesis at high purity and at low cost. By screening a 100-billion peptide phage display library against calprotectin, we identified a high-affinity peptide (K-d = 26 +/- 3 nM) that binds to a large surface region (951 angstrom(2)) as shown by X-ray structure analysis. The peptide uniquely binds the calprotectin tetramer, which enabled robust and sensitive quantification of a defined species of calprotectin by ELISA and lateral flow assays in patient samples, and thus offers an ideal affinity reagent for next-generation inflammatory disease diagnostic assays.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41467-023-38075-7.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.4 MB

Format

Adobe PDF

Checksum (MD5)

8e98d36d0064ab7bae742ae62d06ad68

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés