Spectra of non-regular elements in irreducible representations of simple algebraic groups
We study the spectra of non-regular semisimple elements in irreducible representations of simple algebraic groups. More precisely, we prove that if G is a simply connected simple linear algebraic group and φ : G → GL(V ) is a non-trivial irreducible representation for which there exists a non-regular non-central semisimple element s ∈ G such that φ(s) has almost simple spectrum, then, with few exceptions, G is of classical type and dim V is minimal possible. Here the spectrum of a diagonalizable matrix is called simple if all eigenvalues are of multiplicity 1, and almost simple if at most one eigenvalue is of multiplicity greater than 1. This yields a kind of characterization of the natural representation (up to their Frobenius twists) of classical algebraic groups in terms of the behavior of semisimple elements.
article2021-8.pdf
Publisher
http://purl.org/coar/version/c_970fb48d4fbd8a85
openaccess
CC BY
327.58 KB
Adobe PDF
7059e856bcabe6755b845f787210d6db