Effect of triangularity on plasma turbulence and the SOL-width scaling in L-mode diverted tokamak configurations
The effect of triangularity on tokamak boundary plasma turbulence is investigated using global, flux-driven, three-dimensional, two-fluid simulations. The simulations show that negative triangularity (NT) stabilizes boundary plasma turbulence, and linear investigations reveal that this is due to a reduction of the magnetic curvature driven by interchange instabilities, such as the resistive ballooning mode (RBM). As a consequence, the pressure decay length L ( p ), related to the scrape-off layer (SOL) power fall-off length lambda ( q ), is found to be affected by triangularity. Leveraging considerations on the effect of triangularity on the linear growth rate and nonlinear evolution of the RBM, the analytical theory-based scaling law for L ( p ) in L-mode plasmas, derived by Giacomin et al (2021 Nucl. Fusion 61 076002), is extended to include the effect of triangularity. The scaling is in agreement with nonlinear simulations and a multi-machine experimental database, which includes recent TCV discharges dedicated to the study of the effect of triangularity in L-mode diverted discharges. Overall, the present results highlight that NT narrows the L ( p ) and considering the effect of triangularity is important for a reliable extrapolation of lambda ( q ) from present experiments to larger devices.
Lim_2023_Plasma_Phys._Control._Fusion_65_085006.pdf
publisher
openaccess
CC BY
4.53 MB
Adobe PDF
7dc2048ed60f86cf0cc3153395f1fb33