Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Many-body screening effects in liquid water
 
research article

Many-body screening effects in liquid water

Reshetnyak, Igor  
•
Lorin, Arnaud  
•
Pasquarello, Alfredo  
May 11, 2023
Nature Communications

The screening arising from many-body excitations is a crucial quantity for describing absorption and inelastic X-ray scattering (IXS) of materials. Similarly, the electron screening plays a critical role in state-of-the-art approaches for determining the fundamental band gap. However, ab initio studies of the screening in liquid water have remained limited. Here, we use a combined analysis based on the Bethe-Salpeter equation and time-dependent density functional theory. We first show that absorption spectra at near-edge energies are insufficient to assess the accuracy by which the screening is described. Next, when the energy range under scrutiny is extended, we instead find that the IXS spectra are highly sensitive and allow for the selection of the optimal theoretical scheme. This leads to good agreement with experiment over a large range of transferred energies and momenta, and enables establishing the elusive fundamental band gap of liquid water at 9.3 eV.

Electron screening is crucial to interpret inelastic X-ray scattering experiments in materials. Here the authors use a combined analysis based on the Bethe-Salpeter equation and time-dependent density functional theory to calculate the dielectric function and obtain the band gap of liquid water.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41467-023-38420-w.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.03 MB

Format

Adobe PDF

Checksum (MD5)

f976287c26c06ff8e977fea99eeb6f4d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés