Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Spin wave dispersion of ultra-low damping hematite ( α−Fe2O3 ) at GHz frequencies
 
research article

Spin wave dispersion of ultra-low damping hematite ( α−Fe2O3 ) at GHz frequencies

Hamdi, Mohammad  
•
Posva, Ferdinand  
•
Grundler, Dirk  
2023
Physical Review Materials

Low magnetic damping and high group velocity of spin waves (SWs) or magnons are two crucial parameters for functional magnonic devices. Magnonics research on signal processing and wave-based computation at GHz frequencies focused on the artificial ferrimagnetic garnet Y3Fe5O12 (YIG) so far. We report on spin wave spectroscopy studies performed on the natural mineral hematite (α-Fe2O3), which is a canted antiferromagnet. By means of broadband GHz spectroscopy and inelastic light scattering, we determine a damping coefficient of 1.1×10−5 and magnon group velocities of a few 10 km/s, respectively, at room temperature. Covering a large regime of wave vectors up to k ≈ 24 rad/μm, we find the exchange stiffness length to be relatively short and only about 1 Å. In a small magnetic field of 30 mT, the decay length of SWs is estimated to be 1.1 cm similar to the best YIG. Still, inelastic light scattering provides surprisingly broad and partly asymmetric resonance peaks. Their characteristic shape is induced by the large group velocities, low damping, and distribution of incident angles inside the laser beam. Our results promote hematite as an alternative and sustainable basis for magnonic devices with fast speeds and low losses based on a stable natural mineral.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Spin wave dispersion of ultra-low damping hematite at GHz frequencies PhysRevMaterials.7.054407.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.98 MB

Format

Adobe PDF

Checksum (MD5)

bc6e75a81f83d649481c6e34f891c8b0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés