Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams
 
working paper

Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams

Vento, Valeria  
•
Rölli, Philippe Andreas  
•
Verlekar, Sachin Suresh  
Show more
February 15, 2023

Nanocavities formed by ultrathin metallic gaps, such as the nanoparticle-on-mirror geometry, permit the reproducible engineering and enhancement of light-matter interaction thanks to mode volumes reaching the smallest values allowed by quantum mechanics. Although a large body of experimental data has confirmed theoretical predictions regarding the dramatically enhanced vacuum field in metallic nanogaps, much fewer studies have examined the far-field to near-field input coupling. Estimates of this quantity usually rely on numerical simulations under a plane wave background field, whereas most experiments employ a strongly focused laser beam. Moreover, it is often assumed that tuning the laser frequency to that of a particular cavity mode is a sufficient condition to resonantly excite its near-field. Here, we experimentally demonstrate selective excitation of nanocavity modes controlled by the polarization and frequency of the laser beam. We reveal mode-selectivity by recording fine confocal maps of Raman scattering intensity excited by cylindrical vector beams, which are compared to the known excitation near-field patterns. Our measurements allow unambiguous identification of the transverse vs. longitudinal character of the excited cavity mode, and of their relative input coupling rates as a function of laser wavelength. The method introduced here is easily applicable to other experimental scenarios and our results are an important step to connect far-field with near-field parameters in quantitative models of nanocavity-enhanced phenomena such as molecular cavity optomechanics, polaritonics and surface-enhanced spectroscopies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2302.06750.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

copyright

Size

14.34 MB

Format

Adobe PDF

Checksum (MD5)

66a80609c6c7c59a882113a12c417891

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés