Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. An Error-Based Approximation Sensing Circuit for Event-Triggered Low-Power Wearable Sensors
 
research article

An Error-Based Approximation Sensing Circuit for Event-Triggered Low-Power Wearable Sensors

Zanoli, Silvio  
•
Ponzina, Flavio  
•
Teijeiro, Tomas  
Show more
2023
IEEE Journal on Emerging and Selected Topics in Circuits and Systems

Event-based sensors have the potential to optimize energy consumption at every stage in the signal processing pipeline, including data acquisition, transmission, processing, and storage. However, almost all state-of-the-art systems are still built upon the classical Nyquist-based periodic signal acquisition. In this work, we design and validate the Polygonal Approximation Sampler (PAS), a novel circuit to implement a general-purpose event-based sampler using a polygonal approximation algorithm as the underlying sampling trigger. The circuit can be dynamically reconfigured to produce either a coarse or detailed reconstruction of the analog input by adjusting the error threshold of the approximation. The proposed circuit is designed at the Register Transfer Level and processes each input sample received from the analog-to-digital converter (ADC) in a single clock cycle. The PAS has been tested with three different types of archetypal signals captured by wearable devices (electrocardiogram, accelerometer, and respiration data) and compared with a standard periodic ADC. These tests show that single-channel signals, with slow variations and constant segments (like the used single-lead ECG and the respiration signals), take great advantage of the used sampling technique, reducing the amount of data used up to 99% without significant performance degradation. At the same time, multi-channel signals (like the six-dimensional accelerometer signal) can still benefit from the designed circuit, achieving a reduction factor of up to 80% with minor performance degradation. These results open the door to new types of wearable sensors with reduced size and higher battery lifetime.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JETCAS2023-An_Error-Based_Approximation_Sensing_Circuit_for_Event-Triggered_Low-Power_Wearable_Sensors.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

10.2 MB

Format

Adobe PDF

Checksum (MD5)

ebbdaf31f98712f8107f213147863acc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés