Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic
 
Loading...
Thumbnail Image
research article

Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic

Lenhardt, Emily D.
•
Gao, Lan
•
Redemann, Jens
Show more
April 17, 2023
Atmospheric Measurement Techniques

Accurately capturing cloud condensation nuclei (CCN) concentrations is key to understanding the aerosol-cloud interactions that continue to feature the highest uncertainty amongst numerous climate forcings. In situ CCN observations are sparse, and most non-polarimetric passive remote sensing techniques are limited to providing column-effective CCN proxies such as total aerosol optical depth (AOD). Lidar measurements, on the other hand, resolve profiles of aerosol extinction and/or backscatter coefficients that are better suited for constraining vertically resolved aerosol optical and microphysical properties. Here we present relationships between aerosol backscatter and extinction coefficients measured by the airborne High Spectral Resolution Lidar 2 (HSRL-2) and in situ measurements of CCN concentrations. The data were obtained during three deployments in the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) project, which took place over the southeast Atlantic (SEA) during September 2016, August 2017, and September-October 2018.Our analysis of spatiotemporally collocated in situ CCN concentrations and HSRL-2 measurements indicates strong linear relationships between both data sets. The correlation is strongest for supersaturations (S) greater than 0.25 % and dry ambient conditions above the stratocumulus deck, where relative humidity (RH) is less than 50 %. We find CCN-HSRL-2 Pearson correlation coefficients between 0.95-0.97 for different parts of the seasonal burning cycle that suggest fundamental similarities in biomass burning aerosol (BBA) microphysical properties. We find that ORACLES campaign-average values of in situ CCN and in situ extinction coefficients are qualitatively similar to those from other regions and aerosol types, demonstrating overall representativeness of our data set. We compute CCN-backscatter and CCN-extinction regressions that can be used to resolve vertical CCN concentrations across entire above-cloud lidar curtains. These lidar-derived CCN concentrations can be used to evaluate model performance, which we illustrate using an example CCN concentration curtain from the Weather Research and Forecasting Model coupled with physics packages from the Community Atmosphere Model version 5 (WRF-CAM5). These results demonstrate the utility of deriving vertically resolved CCN concentrations from lidar observations to expand the spatiotemporal coverage of limited or unavailable in situ observations.

  • Details
  • Metrics
Type
research article
DOI
10.5194/amt-16-2037-2023
Web of Science ID

WOS:000971696300001

Author(s)
Lenhardt, Emily D.
•
Gao, Lan
•
Redemann, Jens
•
Xu, Feng
•
Burton, Sharon P.
•
Cairns, Brian
•
Chang, Ian
•
Ferrare, Richard A.
•
Hostetler, Chris A.
•
Saide, Pablo E.
Show more
Date Issued

2023-04-17

Publisher

COPERNICUS GESELLSCHAFT MBH

Published in
Atmospheric Measurement Techniques
Volume

16

Issue

7

Start page

2037

End page

2054

Subjects

Meteorology & Atmospheric Sciences

•

spectral-resolution lidar

•

in-situ

•

airborne observations

•

oracles observations

•

absorbing aerosols

•

optical-properties

•

remote

•

precipitation

•

climate

•

radiation

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LAPI  
Available on Infoscience
May 8, 2023
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/197514
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés