Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Numerical and experimental investigations of a microwave interferometer for the negative ion source SPIDER
 
research article

Numerical and experimental investigations of a microwave interferometer for the negative ion source SPIDER

Agnello, R.
•
Cavazzana, R.
•
Furno, I.  
Show more
March 1, 2023
Journal Of Instrumentation

The electron density close to the extraction grids and the co-extracted electrons represent a crucial issue when operating negative ion sources for fusion reactors. An excessive electron density in the plasma expansion region can indeed inhibit the negative ion production and introduce potentially harmful electrons in the accelerator. Among the set of plasma and beam diagnostics proposed for SPIDER upgrade, a heterodyne microwave (mw) interferometer at 100 GHz is currently being explored as a possibility to measure electron density in the plasma extraction region. The major issue in applying this technique in SPIDER is the poor accessibility of the probing microwave beam through the source metal walls and the long distance of 4 m at which mw modules should be located outside the vacuum vessel. Numerical investigations in a full-scale geometry showed that the power transmitted through the plasma source apertures was above the signal-to-noise ratio threshold for the microwave module sensitivity. An experimental proof -of-principle of the setup to assess the possibility of signal phase detection was then performed. The microwave system was tested on an experimental full-scale test-bench mimicking SPIDER viewports accessibility constraints, including the presence of a SPIDER-like plasma. The outcome of first tests revealed that, despite the geometrical constraints, in certain conditions, the phase detection, and, therefore, electron density measurements are possible. The main issue arises from decoupling the one-pass signal from spurious multipaths generated by mw beam reflections, requiring signal cross correlation analysis. These preliminary tests demonstrate that despite the 4 m distance between the mw modules and the presence of metal walls, plasma density measurement is possible when the 80 mm diameter ports are available. In this contribution, we discuss the numerical simulations, the preliminary experimental tests and suggest design upgrades of the interferometric setup to enhance signal transmission.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Agnello_2023_J._Inst._18_C03009.pdf

Type

Publisher

cris-layout.advanced-attachment.oaire.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.53 MB

Format

Adobe PDF

Checksum (MD5)

781156d744caf8822497a37363020a98

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés