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Abstract

Detailed single neuron modeling is widely used to study neuronal functions. While cel-
lular and functional diversity across the mammalian cortex is vast, most of the available
computational tools are dedicated to the reproduction of a small set of specific features
characteristic of a single neuron. Here, we present a generalized automated workflow for
the creation of robust electrical models and illustrate its performance by building cell
models for the rat somatosensory cortex (SSCx). Each model is based on a 3D morpho-
logical reconstruction and a set of ionic mechanisms specific to the cell type. We use an
evolutionary algorithm to optimize passive and active ionic parameters to match the elec-
trophysiological features extracted from whole-cell patch-clamp recordings. To shed light
on which parameters are constrained by experimental data and which could be degener-
ate, we perform a parameter sensitivity analysis. We also validate the optimized models
against additional experimental stimuli and assess their generalizability on a population
of morphologies with the same morphological type. With this workflow, we generate SSCx
neuronal models producing the variability of neuronal responses. Due to its versatility,
our workflow can be used to build robust biophysical models of any neuronal type.

1 Introduction

Biophysically detailed neuronal models enable in silico exploration of the underlying complexity
of information processing in a single neuron. These models allow systematic and reversible
manipulations of the neuronal properties, which are not necessarily feasible in an experimental
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setup. Detailed neuronal models therefore provide valuable tools for hypothesis testing and to
guide further experiments. For example, such models helped to advance our understanding of
the importance of morphology on neuronal excitability [Mainen and Sejnowski, 1996, Vetter
et al., 2001, van Elburg and van Ooyen, 2010] and the contribution of specific currents to cell
function [Hay et al., 2011, Traub et al., 2003, Poirazi et al., 2003, Segev and London, 2000]. In
addition they served as a basis to build neuronal circuits to simulate and study brain activity
[Billeh et al., 2020, Markram et al., 2015].

In general, electrical models (e-models) are expected to reproduce experimentally observed
electrophysiological behaviors. This can be quantified via a similarity score that can be com-
puted either directly as the difference between experimental and numerical traces [Brookings
et al., 2014] or between features extracted from these traces. Since parameters such as ion
channel conductances and passive membrane properties are currently not always experimen-
tally measurable, obtaining a model with a good score requires either manual or automatic
exploration of the parameter space [Prinz et al., 2003, Günay et al., 2008, Sekulić et al., 2014].
The latter can be achieved through stochastic global parameter optimization using evolution-
ary algorithms (EA). Simple to parallelize and effective in high dimensions, EAs have gained
popularity in the field [Van Geit et al., 2008]. Here we use an indicator-based evolutionary
algorithm (IBEA) [Zitzler and Künzli, 2004, Van Geit et al., 2016] with good performance ac-
cording to benchmarks [Mohácsi et al., 2020]. Since cell models are usually customized through
feature extraction and parameter fitting for a specific study or released independently, to our
knowledge only a few completely open-sourced and reproducible workflows of model optimiza-
tion exist [Gouwens et al., 2018]. Here we present a fully integrated, single cell model-building
routine based on open-source tools.

Model building can serve to construct a cell model that would represent either a single
biological cell or a predefined type of cells [Ascoli et al., 2008, Markram et al., 2004, Tasic
et al., 2018]. Although the former approach is common [Gouwens et al., 2018], it has a few
limitations. First, while building a neuronal model it could be preferable to constrain its
parameters by a rich repertoire of measured neuronal behaviors. For example, for a model
that includes a full morphological tree, it would be beneficial to tune this model not only
to somatic responses but also take into account dendritic recordings. However, usually it is
challenging to collect a battery of voltage recordings from several cellular compartments in
the same neuron. This can be overcome by combining dendritic and somatic recordings which
were acquired in different cells of the electrical type (e-type). Moreover, the task of building
neuronal circuits requires constructing hundreds of thousands of neuronal models that represent
the same neuronal type. Optimizing the parameters of such a large number of models would be
computationally prohibitive and time-consuming. On the other hand, a canonical model allows
the study of properties of a neuronal type and can be used in large circuit building by applying
the model to a set of morphologies that constitute the same morphological type (Markram et al.
[2015]).

In this work, we developed a workflow for single model creation, which allows us to build
canonical neuronal models. With this approach we created 40 models representing 11 e-types
in the juvenile rat somatosensory cortex (SSCx). For each cell type, we extracted a set of elec-
trophysiological features which were used to optimize model parameters. Then, each canonical
model was applied to a number of morphologies to assess its generalization. In addition, using
a layer 5 pyramidal cell (L5PC) model as a use case we performed a dendritic model validation
and an analysis of the optimized parameter space. In addition, we present a set of notebooks
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that allows the reader to follow all the steps of the workflow on the example of the L5PC.

2 Results

2.1 Single cell model building workflow

Our goal was to develop an open-source workflow for generating robust e-models of neu-
ronal cell types (Fig.1). Our workflow capitalizes on other open-source Python packages,
such as BluePyEfe [Blue Brain Project, 2020a] for the extraction of electrophysiological fea-
tures, BluePyOpt [Van Geit et al., 2016] to perform data-driven model optimization and
BluePyMM [Blue Brain Project, 2020b] to generalize the electrical models to large sets of
neuronal morphologies. The modular structure of our workflow with configuration files con-
taining information about the model’s parameters, features, and cellular morphology allows for
a flexible and multifaceted range of applications.

During the first step of the workflow we extracted a set of electrophysiological features (e-
features) from the voltage recordings of each cell that belong to the same e-type using BluePyEfe
(see Sec.2.2 and Methods). The average value of the extracted features of all the cells of the same
e-type were used as constraints during the optimization process (Fig.1, E-feature extraction).
The standard deviations were also computed and were used as a way to normalize the e-feature
scores during the optimization step.

The second step (Fig.1, Optimization) aims at building canonical e-models that reproduce
the previously obtained e-feature values when the neuron model is stimulated in silico with
the same current stimulus. An e-model is composed of: an detailed morphological reconstruc-
tion (exemplar morphology), mechanisms describing the dynamics of the passive and active
electric properties of the membrane, and mechanisms describing the ionic dynamics inside the
membrane of the cell (see Table 5). The free parameters of these mechanisms (e.g. maximum
channel conductance, calcium decay) were optimized using an evolutionary algorithm [Zitzler
and Künzli, 2004, Van Geit et al., 2016] with BluePyOpt. The cost function for the optimiza-
tion is the sum of the errors between e-features produced by the e-model and the experimental
e-features (Eq. 1). The evolutionary algorithm then searches for a set of parameters that
minimize this cost function.

Once e-models were built, their quality was assessed by inspecting behaviors that were not
specifically constrained with experimental data during the optimization (Fig.1, Validation).
This step checks for the reproduction of the attenuation of dendritic and synaptic potentials as
well as somatic responses to the stimuli not used during optimizations (see Sect.2.4 for details).

Finally, we tested morphological generalizability of the e-models using the BluePyMM soft-
ware [Blue Brain Project, 2020b]). Since our models were optimized for a single morphology,
we examined their performance on a broad collection of morphologies to select working pairs
of morphologies and e-models, leading to what is referred to as morpho-electric models (me-
models) (Fig.1). This collection of in silico cells can for example be used to build a microcircuit
Markram et al. [2015] (See Sect.2.5 and Methods sections).

With our workflow, we generated e-models for the various firing and morphological neu-
ronal types present in the juvenile rat SSCx. Based on the whole-cell patch-clamp single-cell
recordings each cell was manually assigned to one of 11 e-types [Ascoli et al., 2008]: continuous
adapting pyramidal cells (cADpyr) and 10 interneuron firing e-types: continuous accommodat-
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Figure 1: E-model building workflow. Schematic illustration of the steps involved in creating
neuronal models. See text of Sect. 2.1 for a description of the pipeline.

ing (cAC), burst accommodating (bAC), continuous non-accommodating (cNAC), burst non-
accommodating (bNAC), delayed non-accommodating (dNAC), delayed stuttering (dSTUT),
burst irregular firing (bIR), continuous irregular firing (cIR), burst stuttering bSTUT) and
continuous stuttering (cSTUT). One e-model was generated per interneuron firing type. For
the pyramidal cells one e-model per layer (2/3, 4 ,5, 6) was generated. For e-models that did
not generalize well to all the matching morphological types (m-types), additional optimizations
were run to generate e-models for specific m-types. This resulted in a final set of 40 e-models.

In the next chapters, we present in more details each step of our workflow.

2.2 Electrophysiological features of the SSCx neuronal e-types

Using the first step of the workflow, we extracted a number of e-features from voltage traces
for each neuron that belongs to one of the 11 e-types identified in our SSCx recordings. To
demonstrate variability between different e-types, we considered somatic single-cell recordings
in response to a depolarizing step current injection (2 s) with different intensities. The features
that were extracted from these recordings represent firing properties of the cell, such as the
mean firing frequency, interspike intervals and burst number. Then, a hyperpolarizing current
(3 s) was applied to characterize passive cell properties and voltage sag. Finally, a short
(50 ms) depolarizing step with a high sampling rate was applied to reliably record a single
action potential (AP) waveform (Fig.2A). Consequently, features that were extracted from
these recordings target single AP properties, such as afterhyperpolarization potential (AHP),
action potential (AP) width, AP fall and rise time.

To systematically combine e-features from different cells within the same e-type, we de-
ployed the following normalization strategy. First, from the available recordings we computed
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a threshold current (rheobase) for each cell. This value was used to re-scale all the protocols
(see Methods) such that each protocol corresponds to a percentage of the rheobase. Then,
for each chosen protocol intensity (e.g. 150% of the rheobase) we selected the corresponding
voltage traces and extracted a set of features from each recording. For each e-type, we then
computed the mean and standard deviation of the feature values (Fig.2B) which were used in
the next step of the workflow.

We illustrate the diversity of neuronal firing patterns considered in the current study for
several extracted e-features in Fig.2B (and SI Table 3). As expected, pyramidal cells (i.e.
cADpyr e-type) exhibit lower input resistance than inhibitory cells. On average, all inhibitory
cells have shorter AP duration and lower AP amplitude when compared to cADpyr cells. Among
the inhibitory cells, accommodating and irregularly firing cells have lower firing rates than non-
accommodating and stuttering ones, while stuttering and irregularly firing types have a higher
number of bursts than other firing types. Moreover, typically irregularly firing, bursting and
accommodating e-types show more diversity in their interspike intervals (ISI), reflected in the
logarithmic slope of ISIs, than the rest of the firing e-types. This observation is coherent with
the firing pattern of the stuttering and irregularly bursting cells, which can display a wide
variability in the number of bursts and interspike intervals.
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Figure 2: E-features of the SSCx neuronal e-types. A. Exemplar patch-clamp voltage recordings
of 11 e-types. Each subplot consists of exemplar traces for three stimuli: long depolarizing
current (2 s), hyperpolarizing current (1 s) and a short depolarizing current (50 ms). B.
Exemplar subset of extracted features from experimental recordings for each e-type. The e-
features presented here are: firing frequency (for injected current corresponding to 300% from
the rheobase), number of bursts (current of 150% from the rheobase), logarithm of the slope of
interspike intervals (’log(ISI slope)’, current of 150% from the rheobase), AP full width at half
maximum (’AP FWHM’, current of 150% from the rheobase), AP amplitude (current of 150%
from the rheobase) and input resistance (current of -40 pA). All features are plotted as mean
value ± the standard deviation.
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2.3 Model construction and optimization

In order to create an e-model of a neuron, we needed to define ionic mechanisms ( see the
ion channels and calcium dynamics in Fig.3A), along with previously mentioned experimental
constraints (e.g. e-features and reconstructed neuronal morphologies).

The models of ion channels were constructed based on the Hodgkin-Huxley formalism (see
Methods and Fig.7). Each e-model has a number of ionic mechanisms (e.g. persistent and tran-
sient sodium, persistent and transient potassium, intracellular calcium dynamics, see Table 5).
Several interneuron e-types (bIR, cIR, cSTUT, bSTUT, dSTUT) additionally have a stochastic
potassium channel [Diba et al., 2006, Mendonça et al., 2016] for irregular spiking. All aforemen-
tioned mechanisms were implemented in the NEURON simulator Carnevale and Hines [2006].
A full list of the ionic mechanisms used in this work can be found in Table 7. While models of
these ionic mechanisms were defined with respect to their experimental characteristics, some of
their parameters, such as the exact maximal ionic conductances or intracellular calcium decay,
remain unknown. The aim of the optimization is to find a set of parameters that will allow the
model to accurately reproduce cellular features extracted from the experiments.

To solve this task, we used the indicator-based evolutionary algorithm (IBEA) algorithm
[Zitzler and Künzli, 2004] available in the Python package BluePyOpt [Van Geit et al., 2016] (see
Methods). At each generation of the evolutionary process, a wide range of models are produced
through random mutations and mating of the members of the previous generations. The fitness
of the offspring is then evaluated by computing the difference between the e-features produced
by the e-model and the experimental ones. The parents of the next generation are selected
based on their fitness. Due to the use of random numbers in the algorithm, this optimization
process can be repeated several times with different random seeds, until satisfactory models are
obtained.

The e-models are evaluated according to a two-step process. First, the resting membrane
potential (RMP), input resistance (Rin), holding current, and rheobase of the models are com-
puted using respectively: no stimulus, a small negative stimulus, constant stimuli of increasing
amplitude, and step stimuli of increasing amplitude. Second, the e-models are evaluated for a
number of step protocols that reveal the firing properties of the neuron. The current stimuli
that are used were individually rescaled based on the holding current and rheobase.

The results of the optimizations are illustrated for a thick-tufted pyramidal neuron e-model
(cADpyr L5TPC) in Fig.3B. The majority of e-feature scores (z-scores) for this e-model are
below two standard deviations of the experimental mean value – suggesting the model closely
replicates the experimental data. The e-model was optimized for multiple starting seed values
and the best seed was chosen for each e-model.

When optimizing interneuron models that contain stochastic potassium channels we used a
two-step optimization. This is due to the fact that the optimization did not converge with all
the parameters free at the same time. During the first stage, the stochasticity of the potassium
channels was disabled and we optimized for all the e-features except burst number. In the second
optimization stage, stochasticity was re-enabled and all the parameter values obtained from the
first stage were used, except for the maximum conductance of stochastic potassium channels .
This part of the optimization was constrained by burst number and interspike intervals. Such
an approach also reduces the optimization time since the non-deterministic mode of stochastic
voltage-gated potassium (Kv) channels increases the run time of simulations.

Using this procedure, we optimized e-models for all aforementioned SSCx e-types. Exemplar
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responses from different e-models representing all the e-types are depicted in Fig.3C. Note the
similarity in the firing patterns between the e-models and the experimentally recorded data
(Fig. 2A). Once the best e-model is found for an e-type, it undergoes validation.

2.4 Validation and analysis of the detailed neuronal model

It was unknown how the optimized e-models would respond to the stimuli not used in the
process of optimization. To test this we applied two validation routines to the study case of
L5PC: dendro-synaptic (Markram et al. [2015]) and somatic. Since dendritic attenuation data
was available only for the L5PC, the validation and e-model analyses were performed only for
this e-model.

First, we tested whether our model can reproduce the attenuation of dendritic back-propagating
action potentials (bAPs) and excitatory postsynaptic potentials (EPSPs) observed in the liter-
ature. For bAP attenuation, we injected a current step (5 ms, 2 nA) in the soma and recorded
the voltage from apical and basal dendrites at various distances from the soma (Fig.4A). We
compared the attenuation length constant of our in silico results to the experimentally reported
ones [Berger et al., 2001, Nevian et al., 2007] (Fig.4B). For validation of EPSP attenuation we
simulated a transient change in the synaptic conductance in distant apical (1.5 nS) and basal
(0.2 nS) dendrites (Fig.4C). Then, we calculated the ratio of dendritic to somatic attenuation
and compared it to the experimental results reported previously [Berger et al., 2001, Nevian
et al., 2007]. Both bAP and EPSP attenuation in the basal dendrites in the e-model (bAP:
120.6± 1.1 µm, EPSP: 39.6± 0.2 µm) were consistent with the experimentally reported values
(bAP: 145.8± 8.7 µm, EPSP: 39.9± 0.9 µm). In the case of the apical dendrite, agreement be-
tween in silico (bAP: 651.3±1.8 , EPSP: 263.6±1.8 µm) and experimental (bAP: 675.5.3±27.4
µm, EPSP: 273.7 ± 8.2 µm) results were achieved for the in silico morphologies with apical
dendrites with a diameter of 2−6 µm (Fig. 4B-C). These diameter values are larger than those
found in the juvenile rat [Zhu, 2000], which is consistent with the fact that the aforementioned
studies were performed in the adult rat.

Next, to test whether the e-model could reproduce a wide range of somatic responses we
used somatic validations. We aimed to compare the experimental data to the responses of the
optimized model for stimuli that were not used in the course of optimizations. We considered
three protocols (Ramp, sAHP and IDHyperpol, see Methods) (Fig.4D, first column). From
the corresponding single-cell recordings (Fig.4D, second column) and model responses (Fig.4D,
third column) we extracted a set of e-features and calculated their scores (Fig.4E). Most of
the e-features of the e-model are less than five standard deviations away from the experimental
e-features, except the ’spike count’ and ’time to first spike’ for the Ramp protocol (8 standard
deviation instead).

To assess whether parameters of the L5PC e-model were well constrained by the e-features
used in optimization we analyzed the parameter sensitivity of the e-model (Fig.5A). For this,
we varied the value of one parameter at a time while keeping the rest of the parameters fixed.
The values of the parameters were varied by 1%, 50% and 90%. Then, we computed the
slope of the change in score value for each parameter (Fig.9). If the slope was approximately
zero it meant that changes in the parameter value did not affect the e-feature in question.
We demonstrate the results of this analysis for three protocols (bAP, Step 150% and IV -
100%). Our results show that the passive parameters (g pas, e pas, gIh), axonal sodium and
somatic sodium demonstrated a slope larger than one for all e-features in all the protocols
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Figure 3: Model construction and optimization results. A. Layer 5 thick-tufted pyramidal
cell (L5PC) morphology showing the mechanisms inserted in different morphological sections:
the apical dendrites (green), soma (red), basal dendrites (blue), axon initial segment, AIS
(thin yellow cylinder) and myelinated axon (thick orange cylinder). B. Scores and exemplar
traces of the optimized L5PC model for e-features of single action potentials (APWaveform),
firing properties (Step/IDRest), input resistance and hyperpolarization features (IV), back-
propagating action potential and peak intracellular calcium concentration recorded in the apical
dendrites, soma and AIS, (bAP, for pyramidal neurons only) and spike recovery (SpikeRec).
The resting membrane potential (RMP), holding current, threshold current are also optimized
as e-features. C. In silico voltage recordings obtained from e-models (one for each e-type) for
three protocols: IDRest (150/140 % from the rheobase), IV (-100 % from the rheobase) and
APWaveform (320/350 % from the rheobase). These e-models are in close agreement with
various experimental e-types as shown in Fig.2A
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considered (Fig.5A). All axonal parameters, except transient potassium, somatic sodium and
gKv1.3 also show a slope larger than one for the e-features reflecting firing properties of the
cell, such as interspike intervals and firing frequency (Fig.5A). The level of calcium at the
apical point was affected by manipulation of maximum conductances of apical sodium, low
threshold calcium, and calcium dynamics, while less by high threshold calcium channels (slope
= 0.16). All e-features show low sensitivity to the following parameters: somatic and axonal
gK T (maximum slopes are: 0.2 for the apical calcium amplitude; 0.16 for the time to last spike
feature), somatic gCa LVA (slope: 0.14 for last AP amplitude) and apical gCa HVA (slope 0.16
for feature: amplitude of calcium in apical dendrite) Fig.5A. These results indicate that the
model is sensitive to changes in the majority of the parameters (26 out of 31).

Finally, we tested whether our modeling approach can reproduce the phenomenon of de-
generacy of the ionic currents, that was previously reported to take place in electrical neuron
models [Jain and Narayanan, 2020, Marder and Taylor, 2011, Rathour and Narayanan, 2019,
Migliore et al., 2018, Drion et al., 2015, Goaillard and Marder, 2021]. For this purpose, we opti-
mized another L5PC e-model, using different seeds for initialization of the e-model parameters.
To illustrate the difference between the e-models we created currentscape plots [Alonso and
Marder, 2019] of the somatic currents in response to the same percentage of injected current
(depolarizing step of 150 % rheobase) (Fig.5B). We observed that the second e-model has a
more prominent contribution of the Ca LVA and less contribution of sodium current during
firing than the first e-model. The difference between the e-models was also present in the
contribution of potassium currents (K P, Kv1.3, SK) and Ih. However, both e-models did not
have any contribution of transient potassium (K T) to the resting or firing states. This might
indicate that K T is not well constrained by the features used for optimization, independent of
the optimization seed.

2.5 Generalization of electrical models

Each of the aforementioned optimized e-models was built for a particular morphology, which we
call the exemplar morphology. When these e-models are meant to be used in a large network
model, the question of the generalization of an e-model to other morphologies of the same or of
different morphological type arises. Given the computational cost of optimizing an e-model and
the possibly large number of reconstructed morphologies in the network, we chose to take the
following approach. We assigned to each morphology the e-models that match it best, based
on the most common e-types for a certain m-type.

An e-model for a morphology is accepted according to the rule in Equation 2, following the
approach of Markram et al. [2015]. For this purpose we used a total of 1, 015 reconstructed and
manually corrected morphologies of SSCx young rat cortex for the generalization routine (see
Methods). The population of morphologies was artificially increased to 141, 733 by a cloning
procedure on the reconstructions [Reimann et al., 2022]. Given their m-type, morphologies
were then attributed to one of the possible morpho-electro combinations [Markram et al.,
2015, 2004] (see Methods), yielding 366,926 models, of which 233,941 passed generalization.

For the L5PC e-model we ran a generalization routine and separated morphologies on those
that passed and failed this procedure (Fig.6A). We compared the distributions of e-feature
scores between population of morphologies that failed and passed generalization (Fig.6B). We
show that the e-features responsible for rejection of the morphologies are mostly related to
firing properties and after-hyperpolarization depth.
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Figure 5: Sensitivity analysis and degeneracy. A. Analysis of the sensitivity of e-features
to changes in the parameter values. The matrix represents slopes of e-features values. The
sensitivity is presented for e-features extracted based on three protocols (bAP, Step 150% and
IV −100%). Colors reflect the value of the slope, with slopes greater than one represented in
yellow. B. Currentscape plots of two L5PC e-models, with two different sets of maximal intrinsic
conductances. Top. Model responses to the same current stimuli (Step 150%). Bottom. Black-
filled plots represent total positive (top) and negative (bottom) currents in the cell during the
stimuli. The middle panel represents the contribution of ionic inward and outward currents
during the stimuli, each color curve reveals the contribution of one particular ionic current as
the percentage of the total current during the simulation.
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To gain a deeper insight into why some morphologies were not accepted for the L5PC e-
model, we had a closer look at two morphological features (Fig.6C), the surface area of the axon
initial segment (AIS) – taken here as the first 40µm of axon – versus the proximal dendritic
surface area (up to 500µm in path length) for a random sample of 1000 morphologies. We
observe a near linear correlation between these two quantities for a morphology to be valid
under this e-model. These results are in line with previous works such as Hay et al. [2013] and
Rall [1959], which have shown that a consistent ρ factor, defined as the ratio of input resistances
between the AIS and somatodendritic compartments, is important to ensure generalizability of
electrical models. Interestingly we noticed that soma surface area does not correlate with the
pass/fail of the cell (Fig.6C).

Further we confirm that the sodium channels (gNa T somatic and axonal) are indeed the
most important for firing e-features such as spiking frequency (Fig.6D). These two sodium
channels are able to bring the cell to a regime where threshold current is too high with respect
to experimental recordings, thus no protocols can even be computed, resulting in maximum
scores. For these two conductance parameters we show in panels (Fig.6E) (for soma) and
(Fig.6F) (for axon) the sensitivity to all other e-features as well as the total cost (used for
optimization) as a function of the non-normalized conductance values. We observe that the
optimal solution is near the lowest possible gNa T for the exemplar cell to fire, thus any small
deviation of the ratio between the size of axon and the rest of the morphology may bring a cell
into a non-firing regime. This transition point corresponds to the diagonal separation between
black and red dots in panel (Fig.6C), as already pointed out in Hay et al. [2013]. On the
contrary, the gNa T in the soma in Fig.6E is further away from the non-firing regime, thus the
soma size is less important for a cell to be generalized on other morphologies. The optimized
value of the axonal gNa T is close to the minimal value for the exemplar cell to be valid. Thus
if a morphology with the same dendritic structure has an AIS with a smaller surface area, the
cell will not pass our selection criteria.

With this morphological and parameter sensitivity analysis, we were able to determine that
the low value of axonal gNa T was the main cause of failed morphologies, suggesting that a
slight manual adjustment of this parameter may help to improve the generalizability of this
e-model.

Overall, our pipeline produces generalizable electrical models with a high acceptance rate for
most e-types, except for three irregular electrical types: bIR, cIR and dSTUT (Fig.6G). For the
dSTUT e-type only few me-models showed a delay in the first spikes (not shown), preventing
most to pass. For cIR and bIR e-types, the spiking frequencies and interspikes interval are
the most frequent e-features to fail, in addition to the burst number for bIR (meaning many
me-models did not burst as expected) and the amplitudes of action potentials for cIR (not
shown).

Finally, as a verification that the e-models obtained in this work are more generalizable than
in a previous study (Markram et al. [2015]), we compare in Sect.5.1 the results of generalizability
between both versions, and show a clear improvement using the present e-models.

3 Discussion

In this work we present an automatic workflow for single-cell model creation. We demonstrate
the application of this workflow by producing 40 e-models for 11 e-types of the somatosensory
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cortex of a juvenile rat. These models reproduce neuronal responses from patch-clamp record-
ings observed in the corresponding cells. As an example of a single cell study, we assessed the
L5PC e-model robustness, analyzed its parameters and tested the morphological generalization.
We show that the optimized L5PC e-model can be successfully generalized to a wide range of
L5PC morphologies and that the majority of the e-models parameters are constrained by the
optimization cost function used in this study. Moreover, we show that L5PC models can re-
liably reproduce dendritic signal attenuation. These canonical e-models can be used to study
signal propagation in a single cell or in networks. All the steps of the workflow are available to
the reader as openly accessible Python notebooks (4.5).

The approach of building a canonical e-model is based on averaging neuronal responses
across different cells that belong to the same e-type. Although we observe certain variability
in the extracted e-features for each e-type (Fig.2), the canonical e-models will produce only a
single e-feature value. This implies that variability present in the data is dismissed. This is not
necessarily prohibitive in case one studies and analyzes average neuronal behavior, but can be
problematic in tasks where variability is implied, such as circuit simulations. One direct way to
overcome this limitation is to build e-models for every single neuron in the network. However,
this would require a large amount of experimental data and be computationally expensive.
It would also be possible to generate several e-models based on the same input, by varying
the random generator seed, such that the resulting e-models have different optimized sets of
parameters and therefore could represent variability present in the data. This would allow for
the creation of several canonical e-models, each from the same population, yet allowing for the
variability of neuronal responses. Alternatively, in this study we introduce variability among
the me-models by generalizing the e-models over a large set of morphologies.

The set of e-models produced in this work is based on somatic patch clamp recordings
and can be enriched with more details in future versions. For example, to allow for a study
of neuronal synaptic and dendritic integration, the current models of L5PC would benefit
from constraining the e-model by using dendritic calcium imaging data. Also several currents
and channels could be included in the models, such as specific small and big conductance
dendritic channels [Bock et al., 2019, Benhassine and Berger, 2005], or a nonlinear A-type K+
current distribution along the dendrites [Korngreen and Sakmann, 2000, Schaefer et al., 2007].
Moreover, by including axonal reconstructions and fitting corresponding axonal conductances,
we could better understand their role in spike propagation and cell signaling.

In the present case of the SSCx interneuron optimizations we were able to successfully repro-
duce somatic responses of a wide range of e-types. For the irregular and stuttering interneurons,
this was only possible by including stochastic potassium channels in the models. Interneuron
e-models could be further refined through somatic validation analysis by quantifying the per-
formance of optimized e-models on a battery of recordings that were not used in optimizations
(via stimuli such as e.g. a ramp, a sinusoid, etc.). Finally, it should be mentioned that another
approach to produce even more detailed e-models would be to incorporate transcriptomics data
[Gouwens et al. [2018], Tasic et al. [2018], Nandi et al. [2020]], which would guide the compo-
sition of ionic currents present in the model. However, it is not clear yet how much the gene
level expression is an indicator for the protein densities on the cellular membrane.

Yet another aspect of our approach to building a canonical e-model was that the optimization
was performed on single morphology, while variability of morphologies is present within each
m-type [Gouwens et al. [2019], Chen et al. [2009], Vrieler et al. [2019]]. We explored how well
a single canonical e-model can be generalized on various morphologies of compatible m-types.
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According to our results, while other interneurons had high total generalizability, irregularly
firing and delayed stuttering interneurons showed poor generalizability. This could indicate
that irregularly firing models are more sensitive than, for example, continuously firing e-types,
to the morphological properties of the cells. We also observed that pyramidal cells show high
generalizability. When we analyzed the morphological properties that allowed L5PC e-models
to perform acceptably on a large set of morphologies, we noticed that the size of the AIS and
the dendritic area play a considerable role in the e-model score. Most of the morphologies with
a small AIS and a large dendritic area failed when applied to the canonical e-model, which
is consistent with previously reported results [Hay et al., 2013]. To further understand and
possibly improve the generalizability of canonical e-models one would need to study the link
between morphological properties and electrical features of the e-models in more depth.

The parameters of the optimized e-model can be analyzed to assess the its biophysical
properties. For example, with sensitivity analysis we showed how performance of the models is
affected by the perturbations of the parameters [Jezzini et al., 2004, Tennøe et al., 2018]. In the
case of the L5PC e-model, most of the parameters were constrained by the chosen evaluation
function, while changes in some parameters such as axonal and somatic persistent potassium
current maximal conductances had no effect on the e-features. This type of analysis may guide
choices for e-features and protocols to consider in the score function, such that all parameters are
sufficiently constrained. For a more in depth analysis, a closer look at the channel kinetics and
its interplay with the rest of the currents in the cell may provide us more information about e-
model sensitivity. Another aspect of the parameter space analysis is to look at the degeneracy of
parameters [Marder and Taylor, 2011, Goaillard and Marder, 2021, Jain and Narayanan, 2020],
meaning that we can produce several parameter sets which would result in similar performances
of the e-model. We used currentscapes plots to visualize the current dynamics of two L5PC
models with similar performance (reflected in the values of the evaluation function). We saw
that ionic contributions to the overall current was different between the models. However, both
models have a similar parameter sensitivity, with for example no contribution of persistent
potassium current. Further, it could be interesting to investigate to what extent the definition
of the score function can affect the presence of degeneracy in the system and to what extent it
is an implicit property of the system.
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4 Methods

4.1 Data

4.1.1 Electrophysiological recordings

Electrophysiological recordings were obtained from P14-16 rat somatosensory cortex using
whole-cell patch clamp experiments. The recordings were performed as described in Markram
et al. [2015]. Each cell was classified according to its firing type based on the Petilla convention
[Ascoli et al., 2008, Markram et al., 2015]. Recordings were performed in pyramidal cells (7
L6PCs, 44 L5PCs, 3 L4PCs, 8 L23PCs) and interneurons (16 cAC, 22 bAC, 19 cNAC, 28 bNAC,
7 dNAC, 11 dSTUT, 8 bSTUT, 10 cSTUT, 14 bIR, 6 cIR). A number of stimuli were applied for
each cell: IDrest (depolarizing steps, sampling frequency: 10 kHz, duration: 2s), IDthresh (de-
polarizing steps, sampling frequency: 10 kHz, duration: 2 s), APWaveform (depolarizing steps,
sampling frequency: 50 kHz, duration: 50 ms), IV (sequence of current steps, from hyperpo-
larization to depolarization, sampling frequency: 10 kHz, duration: 3 s), SpikeRec (sequence of
brief depolarizing pairs with increasing interval, sampling frequency: 50 kHz, duration: 1.5 s),
Ramp (ramp current, sampling frequency: 10 kHz, duration: 2s), sAHP (small depolarization
currents, sampling frequency: 10 kHZ, duration: 2.5 s), IDHyperpol (depolarizing square pulses
preceded by hyperpolarizing step, sampling frequency: 10 kHZ, duration: 3 s). For each cell a
holding current was applied in order to keep offset voltage at –70 mV (before liquid junction
potential correction of 14 mV).

4.1.2 Morphologies

The following m-types were considered in this study:

• Inhibitory m-types: DAC: Descending Axon Cell; HAC: Horizontal Axon Cell; LAC:Large
Axon Cell; NGC-DA: Neurogliaform Cell with dense axon; NGC: Neurogliaform Cell;
NGC-SA: Neurogliaform Cell with sparse axon; SAC: Small Axon Cell ; BP: Bipolar
Cell; BTC: Bitufted Cell; CHC: Chandelier Cell; DBC: Double Bouquet Cell; LBC: Large
Basket Cell; MC: Martinotti Cell; NBC: Nest Basket Cell; SBC: Small Basket Cell;

• Excitatory cell m-types: IPC: Inverted PC; BPC: Bipolar PC; HPC: Horizontal PC;
TPC:A: Tufted PC, late bifurcation; TPC:B: Tufted PC, early bifurcation; TPC:C: Tufted
PC, small tuft; UPC: Untufted PC; SSC: Spiny Stellate Cell.

A total of 1, 015 reconstructed rat morphologies ([Reimann et al., 2022, Ramaswamy et al.,
2015], expanded dataset from Markram et al. [2015]) have been curated and repaired for cut
plane missing data, following the procedure outlined in Markram et al. [2015]. In that study
a cloning strategy was applied by successive application of rescaling operations and jitter of
section lengths and bifurcations angles. This procedure was designed so that the resulting
morphologies would retain their morphological types, while providing more variability across
morphologies. In addition, axons and dendrites were shuffled within their original m-types to
create more clones. We applied this procedure on the extended dataset of reconstructions to
obtain a total of 141, 733 different morphologies. The relative proportions of morphological
types is dictated by the expected density of morphologies of each type in SSCx, see Table 6.

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520234doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520234
http://creativecommons.org/licenses/by-nc/4.0/


4.2 Single cell model

4.2.1 Electrophysiological features extraction

The extraction of e-features from the voltage traces was performed using the BluePyEfe python
package [Blue Brain Project, 2020a]. A set of e-features (as described in sec 2.3 and sec 2.4)
was extracted from each patch clamp recording for both optimizations (list of protocols and
e-features Table 1) and validations (Table 2). The descriptions of the extracted features are
summarized in Table 8. The membrane potential used as a detection threshold for the onset of
an action potential is -30 mV. In addition, action potentials are only taken into consideration if
they happen during a stimulus. The e-features are averaged across cells of the same e-type. The
main issue with this process is that recordings coming from different cells have different input
resistances. To solve this issue we first define ”targets” expressed as amplitudes relative to the
rheobase of the cells. The rheobase of each cell is computed as the lowest stimulus amplitude
inducing a spike in any of its ’IDrest’ or ’IDthresh’ recordings. The stimulus amplitudes of all
recordings were normalized by the rheobase of their respective cells. Finally, e-feature vectors
were averaged across cells at the target levels. For this operation, a tolerance (10 % in the
present study) is used as a binning width around the targets. For example, for a tolerance of 10
% and a target at 150 % rheobase, e-features are averaged for stimuli with amplitudes ranging
from 140 to 160 %. The standard deviations of the e-features at the targets are computed
following the same protocol.

E-type Protocol E-features
Pyramidal cells APWaveform 320 % AP amplitude, AP1 amp, AP2 amp,

AP duration half width, AHP depth
IV -100 % voltage deflection, voltage deflection begin
IDrest & IDthresh voltage base, voltage after stim, AP amplitude,
150, 200, 280 % APlast amp, AHP depth, inv time to first spike,

time to last spike, inv first ISI, inv second ISI,
inv third ISI, inv fourth ISI, inv fifth ISI,
mean frequency

SpikeRec 600 % decay time constant after stim,
voltage after stim, Spikecount

IV -20 % (Rin) ohmic input resistance vb ssse, voltage base
IV 0 % (RMP) voltage base, Spikecount
RinHoldCurrent bpo holding current
Threshold bpo threshold current
bAP Spikecount, maximum voltage from voltagebase,

maximum ca prox apic from voltagebase,
maximum ca prox basal from voltagebase,
maximum ca prox soma from voltagebase,
maximum ca prox ais from voltagebase

bAC, cAC IDThresh/IDrest voltage base, voltage after stim, AP amplitude,
140, 200, 250, 300 % APlast amp, AHP depth,inv time to first spike,

time to last spike, inv first ISI, inv second ISI,
inv third ISI, inv fourth ISI, inv fifth ISI,
mean frequency

APWaveform 360 % AP amplitude, AP1 amp,
AP duration half width, AHP depth

IV -100 % voltage deflection, voltage deflection begin
IV -20 % (Rin) ohmic input resistance vb ssse, voltage base
IV 0 % (RMP) voltage base, Spikecount
RinHoldCurrent bpo holding current
Threshold bpo threshold current

bNAC, cNAC IDThresh/IDrest voltage base, voltage after stim, AP amplitude,
150, 200, 250, 300 % APlast amp, AHP depth, inv time to first spike,
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time to last spike, inv first ISI, inv second ISI,
inv third ISI, inv fourth ISI, inv fifth ISI,
mean frequency

APWaveform 360 % AP amplitude, AP1 amp,
AP duration half width, AHP depth

IV -100 % voltage deflection, voltage deflection begin
IV -20 % (Rin) ohmic input resistance vb ssse, voltage base
IV 0 % (RMP) voltage base, Spikecount
RinHoldCurrent bpo holding current
Threshold bpo threshold current

dNAC IDThresh/IDrest voltage base, voltage after stim, AP amplitude,
120, 150, 200, 260 % APlast amp, AHP depth, inv time to first spike,

time to last spike, inv first ISI, inv second ISI,
inv third ISI, inv fourth ISI, inv fifth ISI,
mean frequency

APWaveform 300 % AP amplitude, AP duration half width
IV -100 % voltage deflection, voltage deflection begin
IV -20 % (Rin) ohmic input resistance vb ssse, voltage base
IV 0 % (RMP) voltage base ,Spikecount
RinHoldCurrent bpo holding current
Threshold bpo threshold current

cSTUT IDThresh/IDrest voltage base, voltage after stim, AP amplitude,
180, 280 % APlast amp, AHP depth, inv time to first spike,

time to last spike, inv first ISI, inv second ISI,
inv third ISI, inv fourth ISI, inv fifth ISI, inv last ISI
mean frequency

IDThresh/IDrest mean frequency,inv time to first spike,time to last spike,
140, 240 % inv first ISI, inv second ISI, inv third ISI, inv fourth ISI,

inv fifth ISI, inv last ISI, burst number, ISI CV
APWaveform 320 % AP amplitude, AP1 amp,

AP duration half width, AHP depth
IV -100 % voltage deflection, voltage deflection begin
IV -20 % (Rin) ohmic input resistance vb ssse, voltage base
IV 0 % (RMP) voltage base ,Spikecount
RinHoldCurrent bpo holding current
Threshold bpo threshold current

bSTUT IDThresh/IDrest voltage base, voltage after stim, AP amplitude,
140, 280 % APlast amp, AHP depth, inv time to first spike,

time to last spike, inv first ISI, inv second ISI,
inv third ISI, inv fourth ISI, inv fifth ISI, inv last ISI,
mean frequency,

IDThresh/IDrest mean frequency, inv time to first spike,time to last spike,
180, 220 % inv first ISI, inv second ISI, inv third ISI, inv fourth ISI,

inv fifth ISI, inv last ISI, burst number, ISI CV
APWaveform 300 % AP amplitude, AP1 amp,

AP duration half width, AHP depth
IV -100 % voltage deflection, voltage deflection begin
IV -20 % (Rin) ohmic input resistance vb ssse, voltage base
IV 0 % (RMP) voltage base ,Spikecount
RinHoldCurrent bpo holding current
Threshold bpo threshold current

dSTUT IDThresh/IDrest voltage base, voltage after stim, AP amplitude,
120, 200 % APlast amp, AHP depth, inv time to first spike,

time to last spike, inv first ISI, inv second ISI,
inv third ISI, inv fourth ISI, inv fifth ISI, inv last ISI,
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mean frequency
IDThresh/IDrest 140 % mean frequency, inv time to first spike, time to last spike,

inv first ISI, inv second ISI, inv third ISI, inv fourth ISI,
inv fifth ISI, inv last ISI, burst number, ISI CV

APWaveform 300 % AP amplitude, AP1 amp,
AP duration half width, AHP depth

IV -100 % voltage deflection, voltage deflection begin
IV -20 % (Rin) ohmic input resistance vb ssse, voltage base
IV 0 % (RMP) voltage base ,Spikecount
RinHoldCurrent bpo holding current
Threshold bpo threshold current

cIR IDThresh/IDrest voltage base, voltage after stim, AP amplitude,
220, 280 % APlast amp, AHP depth, inv time to first spike,

time to last spike, inv first ISI, inv second ISI,
inv third ISI, inv fourth ISI, inv fifth ISI, inv last ISI
mean frequency

IDThresh/IDrest mean frequency ,inv time to first spike, time to last spike,
140, 180 % inv first ISI, inv second ISI, inv third ISI, inv fourth ISI

inv fifth ISI, inv last ISI, burst number, ISI CV
APWaveform 280 % AP amplitude, AP1 amp,

AP duration half width, AHP depth
IV -100 % voltage deflection, voltage deflection begin
IV -20 % (Rin) ohmic input resistance vb ssse, voltage base
IV 0 % (RMP) voltage base ,Spikecount
RinHoldCurrent bpo holding current
Threshold bpo threshold current

bIR IDThresh/IDrest voltage base, voltage after stim, AP amplitude,
180, 240, 280 % APlast amp, inv time to first spike,time to last spike,

inv first ISI, inv second ISI, inv third ISI,
inv fourth ISI, inv fifth ISI, inv last ISI, AHP depth abs
mean frequency

IDThresh/IDrest mean frequency, inv time to first spike,time to last spike,
140, 200 % inv first ISI, inv second ISI, inv third ISI, inv fourth ISI

inv fifth ISI, inv last ISI, burst number, ISI CV
APWaveform 280 % AP amplitude, AP1 amp,

AP duration half width, AHP depth abs
IV -100 % voltage deflection, voltage deflection begin
IV -20 % (Rin) ohmic input resistance vb ssse, voltage base
IV 0 % (RMP) voltage base ,Spikecount
RinHoldCurrent bpo holding current
Threshold bpo threshold current
Table 1: List of protocol and features used for optimizations for
each e-type

4.2.2 Single Neuron Models and Optimization

Morphologies were manually reconstructed. The axons and their branches were replaced by a
synthetic axon section consisting of an AIS (60 µm) followed by a myelinated axon segment of
1000 µm.

The constant parameters used in the e-model are mentioned in Table 4. The mechanisms
(ion channels and calcium dynamics) are listed in the Table 5. The various mechanisms added
to neuron sections of the cADpyr e-type model is shown in Fig.3A and for other interneuron
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Protocol E-features
IDHyperpol 250 % Spikecount, AP amplitude, ISI values, ISI log slope,

sag amplitude, sag ratio, minimum voltage, steady state voltage stimend
sAHP 150, 350 % Spikecount, AP amplitude, inv time to first spike, AHP depth abs, sag ratio

decay time constant after stim, steady state voltage stimend, sag ratio,
minimum voltage, steady state voltage

APThresh 150 % Spikecount, AP amplitude, inv first ISI, AP1 amp, APlast amp

Table 2: List of protocols and e-features used for validations of the L5PC model

e-types listed in Table 7. The responses of the ion channels to step voltage clamp stimuli are
plotted in Figure7.

The optimization of the e-models was carried out using BluePyOpt Van Geit et al. [2016].
As evolutionary algorithm the IBEA [Zitzler and Künzli, 2004] method was chosen, with an
offspring size of 256 individuals. E-features extracted from the experimental data as described
above 4.2.1 were used as constraints. The protocols and features used for the optimizations are
listed in Table 1.

We calculated the e-features scores using the formula:

efeature score =
|efeatureopt − efeatureexpt|

σexpt
(1)

where e-featureopt and e-featureexpt are the e-feature values from optimization and experiments,
respectively, and σexpt is the standard deviation of the experimental e-features.

During each evaluation of the model the following steps are followed:

1. Calculation of the resting membrane potential (RMP): For a set of e-model parameters
obtained from the optimizer, we computed the soma RMP of the model when no stimulus
is applied.

2. Calculation of the input resistance (Rin): We use a bisection search to find the hold-
ing current that brings the model to the same holding membrane potential as in the
experimental Rin protocol.

3. Calculation of the threshold current: A bisection search is then also used to find the
depolarizing threshold current for generating one spike in the model. If the scores for the
Rin and RMP e-features are above given limits (3 standard deviation of respective mean
e-feature value), the evaluation is stopped and no further protocols are applied.

4. Evaluation of the other protocols: If the model passes step 3, responses and e-features for
other protocols such as IDRest, APWaveform and IV are evaluated.

The optimizations for the e-types cADpyr, bAC, cACint, bNAC, cNAC and dNAC were
carried out in a single stage with the optimization algorithm runing for 100 generations (with
an offspring size of 256). The models with irregular firing (bIR, cIR, bSTUT, cSTUT, and
dSTUT) used a 2 stage optimization approach. These e-models include of stochastic potassium
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channel, StochKv3 to introduce the stochasticity in the firing patterns. The stochastic channel
can work in two modes: deterministic and non-deterministic mode. In the first stage of the
two staged optimization, all the variable e-model parameters including maximum conductance
of stochastic channel (in deterministic mode) were optimized. In the second stage, all the
optimized parameters from first stage are obtained and fixed except the stochastic channel
conductances. The model is then optimized keeping non-deterministic mode on for this channel.
The second stage of optimization was run for 50 generations with 256 offspring per generation.

4.2.3 Model validation

Somatic and dendritic L5PC validations were performed using the BluePyEfe and BluePyOpt
tools. The protocols and features used for somatic validations are listed in Table 2. In particular,
several features were extracted in a specific manner:

• for the sAHP protocol: The ”sag ratio” and ”sag amplitude” were measured for the AHP
that occurs after the short depolarization step.

• for the IDHyperpol protocol: The ”sag ratio” and ”sag amplitude” were measured during
the hyperpolarizing step, while features that correspond to firing properties were measured
during the depolarizing step.

For the dendritic validations, in silico bAP recordings were performed with maximum dis-
tances from the soma of 900 µm for apical and 150 µm for basal dendrites. Diameters of apical
dendrites were measured at the midpoint from soma to apical point, and for basal dendrites at
the midpoint from soma to end point.

EPSP amplitude attenuation ratios were measured from the resting potential to the maxi-
mum of the EPSP during transient synaptic conductance change. These EPSPs were induced at
each dendritic section measured at different locations on apical or basal dendrites. Exponential
fits used the Levenberg-Marquardt algorithm [Levenberg, 1944].

4.3 Sensitivity analysis

The sensitivity analysis was performed for each parameter present in the e-model. Each param-
eter value was modified at a time, while the rest remained intact. At each step the e-feature
values were computed. These values were compared with the control e-features (with all the
parameter values remained intact). Each parameter was decreased by 10, 50 and 90 %. The
final sensitivity value for the parameter was computed as a slope of the curve that represents
the differences in e-feature between control and modified e-models:

sensitivity(pi) =

∑
(xi −mean(X))

∑
(di(pi)−mean(D(pi)))∑

(xi −mean(X))2

where D(pi) is e-features(control) − e-features(pi), pi the set of parameters where the ith pa-
rameter is modified, X corresponds to the percentage by which the ith parameter was modified.

4.4 Electrical model generalization

The procedure to assign e-models to each morphology to create me-models is as follows. For
a given cloned morphology we selected a list of possible optimized e-models that match its
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me-type. We then evaluated the protocols used for the optimization and recorded the scores
for each e-model.

We compared these scores with the scores computed on the exemplar morphology and
accepted an me-model according to the following rule

si,c < max (5, 5 ∗ si,e) ∀i , (2)

with si,e the score of the exemplar morphology for a feature indexed by i, and si,c the score
of the me-model for the same feature. This procedure yielded 233′941 valid me-models which
were then used to study the generalization of the e-models and to create a circuit model.
The large number of evaluations was performed in parallel using the open source BluePyMM
software [Blue Brain Project, 2020b].

4.5 Data and Code Availability

To illustrate the usage of our workflow we prepared a set of Python notebooks: https://

github.com/BlueBrain/SSCxEModelExamples. They allow the reader to run each step of the
pipeline: feature extraction, optimization, validation and generalization. The notebooks were
developed for the L5PC example.
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T. Berger, M. E. Larkum, and H.-R. Lüscher. High i h channel density in the distal apical
dendrite of layer v pyramidal cells increases bidirectional attenuation of epsps. Journal of
neurophysiology, 85(2):855–868, 2001.

Y. N. Billeh, B. Cai, S. L. Gratiy, K. Dai, R. Iyer, N. W. Gouwens, R. Abbasi-Asl, X. Jia,
J. H. Siegle, S. R. Olsen, et al. Systematic integration of structural and functional data into
multi-scale models of mouse primary visual cortex. Neuron, 106(3):388–403, 2020.

Blue Brain Project. Blue brain python e-feature extraction library (bluepyefe). https://

github.com/BlueBrain/BluePyEfe, 2020a.

Blue Brain Project. Blue brain python cell model management (bluepymm). https://github.
com/BlueBrain/BluePyMM, 2020b.

T. Bock, S. Honnuraiah, and G. J. Stuart. Paradoxical excitatory impact of sk channels on
dendritic excitability. Journal of Neuroscience, 39(40):7826–7839, 2019.

T. Brookings, M. L. Goeritz, and E. Marder. Automatic parameter estimation of multicom-
partmental neuron models via minimization of trace error with control adjustment. Journal
of neurophysiology, 112(9):2332–2348, 2014.

N. T. Carnevale and M. L. Hines. The NEURON book. Cambridge University Press, 2006.

C.-C. Chen, S. Abrams, A. Pinhas, and J. C. Brumberg. Morphological heterogeneity of layer
vi neurons in mouse barrel cortex. Journal of Comparative Neurology, 512(6):726–746, 2009.

C. M. Colbert and E. Pan. Ion channel properties underlying axonal action potential initiation
in pyramidal neurons. Nature neuroscience, 5(6):533–538, 2002.

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2022. ; https://doi.org/10.1101/2022.12.13.520234doi: bioRxiv preprint 

https://github.com/BlueBrain/BluePyEfe
https://github.com/BlueBrain/BluePyEfe
https://github.com/BlueBrain/BluePyMM
https://github.com/BlueBrain/BluePyMM
https://doi.org/10.1101/2022.12.13.520234
http://creativecommons.org/licenses/by-nc/4.0/


A. Destexhe, D. Contreras, T. J. Sejnowski, and M. Steriade. A model of spindle rhythmicity
in the isolated thalamic reticular nucleus. Journal of neurophysiology, 72(2):803–818, 1994.

K. Diba, C. Koch, and I. Segev. Spike propagation in dendrites with stochastic ion channels.
Journal of computational neuroscience, 20(1):77–84, 2006.

M. A. Dichter and C. Zona. Calcium currents in cultured rat cortical neurons. Brain research,
492(1-2):219–229, 1989.

G. Drion, T. O’Leary, and E. Marder. Ion channel degeneracy enables robust and tunable
neuronal firing rates. Proceedings of the National Academy of Sciences, 112(38):E5361–E5370,
2015.

J.-M. Goaillard and E. Marder. Ion channel degeneracy, variability, and covariation in neuron
and circuit resilience. Annual review of neuroscience, 44, 2021.

N. W. Gouwens, J. Berg, D. Feng, S. A. Sorensen, H. Zeng, M. J. Hawrylycz, C. Koch, and
A. Arkhipov. Systematic generation of biophysically detailed models for diverse cortical
neuron types. Nature communications, 9(1):1–13, 2018.

N. W. Gouwens, S. A. Sorensen, J. Berg, C. Lee, T. Jarsky, J. Ting, S. M. Sunkin, D. Feng,
C. A. Anastassiou, E. Barkan, et al. Classification of electrophysiological and morphological
neuron types in the mouse visual cortex. Nature neuroscience, 22(7):1182–1195, 2019.
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5 Supplementary Information

Feature c Firing Type bAC bNAC bIR bSTUT dNAC dSTUT cAC cNAC cIR cSTUT cADPYR

Mean frequency (HZ) 13.30± 5.19 24.78± 9.81 12.48± 5.18 19.20± 6.15 66.17± 3.43 51.88± 7.30 16.16± 6.09 40.13± 17.37 8.81± 6.62 43.17± 19.10 19.32± 2.8

Number of bursts 1.15± 0.25 1.17± 0.33 1.54± 0.72 1.75± 0.77 1.05± 0.12 1.86± 1.05 1.19± 0.29 1.22± 0.56 1.79± 0.68 2.06± 0.69 1.28± 0.39

log(ISI slope) 0.32± 0.3 0.09± 0.12 0.37± 0.7 0.21± 0.56 −0± 0.05 0.04± 0.06 0.46± 0.55 0.08± 0.06 0.29± 0.28 −0± 0.23 0.05± 0.31

AP FWHM (ms) 1.09± 0.25 1.02± 0.29 1.04± 0.07 0.95± 0.22 0.80± 0.05 0.91± 0.13 1.25± 0.15 0.62± 0.03 0.67± 0.03 0.85± 0.15 1.58± 0.35

AP amplitude (mV) 62.65± 10.21 60.13± 8.69 59.99± 3.96 60.73± 9.20 49.25± 2.42 50.51± 6.54 67.88± 7.79 59.11± 12.96 269.55± 124.30 49.90± 8.45 94.21± 15.23

Input resistance (Ohm) 368.11± 124.34 253.30± 104.77 291.60± 117.56 198.90± 62.88 137.75± 42.50 148.65± 44.88 282.42± 114.20 215.03± 85.61 269.55± 124.30 200.47± 86.12 47.52± 15.15

Table 3: Values of the extracted e-features for 11 firing type as in Fig2 B. The values are
reported as mean ± SD

Property Value
Resting Membrane Potential (RMP) −80 mV
Temperature 34 ◦C
Specific Membrane Capacitance (cm), Soma 1µF/cm2

Specific Membrane Capacitance (cm), Dendrites 2µF/cm2

Specific Membrane Capacitance (cm), Myelinated Axon 0.02µF/cm2

Axial Resistance 100 Ωcm
Na+ Nernst Potential 50 mV
K+ Nernst Potential -90 mV
Initial Ca+ Concentration 6.5x10−5 mM

Table 4: Constant parameters of the electrical model

m-type nb. repair nb. clone
L1 DAC 16 1680
L1 HAC 27 3645
L1 LAC 10 750
L1 NGC-DA 19 3420
L1 NGC-SA 19 1425
L1 SAC 14 1890
L23 BP 2 2478
L23 BTC 28 5612
L23 CHC 10 1600
L23 DBC 36 3960
L23 LBC 82 17220
L23 MC 29 5889
L23 NBC 36 8190
L23 NGC 8 1452
L23 SBC 44 2216
L2 IPC 4 1044
L2 TPC:A 4 1440
L2 TPC:B 33 19804
L3 TPC:A 51 18360
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L3 TPC:C 11 2479
L4 BP 2 808
L4 BTC 7 1684
L4 CHC 1 328
L4 DBC 7 1478
L4 LBC 31 6510
L4 MC 17 2805
L4 NBC 25 2500
L4 NGC 1 600
L4 SBC 14 700
L4 SSC 10 2400
L4 TPC 36 25924
L4 UPC 34 16324
L5 BP 3 1148
L5 BTC 11 2200
L5 CHC 3 240
L5 DBC 9 2573
L5 LBC 21 10710
L5 MC 38 10830
L5 NBC 22 12658
L5 SBC 4 400
L5 TPC:A 64 27524
L5 TPC:B 38 8740
L5 TPC:C 30 4200
L5 UPC 27 6750
L6 BPC 28 15124
L6 BTC 1 1718
L6 CHC 1 640
L6 DBC 2 3135
L6 HPC 21 10714
L6 IPC 26 21064
L6 LBC 24 12960
L6 MC 20 9500
L6 NBC 11 9936
L6 NGC 1 788
L6 SBC 5 625
L6 TPC:A 20 8400
L6 TPC:C 18 7200
L6 UPC 17 8164

Table 6: Number of repaired and cloned morphologies
used for electrical model generalisation.
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Mechanism Name Parameter abbreviation Reference
Sodium (Na) Channels
Transient Na ḡNa T (maximum conductance) Colbert and Pan [2002]
Persistent Na ḡNa P (maximum conductance) Magistretti and Alonso [1999]
Potassium (K) Channels
Transient K ḡK T (maximum conductance) Korngreen and Sakmann [2000]
Persistent K ḡK P (maximum conductance) Korngreen and Sakmann [2000]
Kv3.1 (Shaker channels) ḡKv3.1 (maximum conductance) Rettig et al. [1992], Grupe et al. [1990]
Slow inactivating K ḡK D (maximum conductance) Shu et al. [2007]
Stochastic K ḡK Stoch (maximum conductance) Diba et al. [2006], Mendonça et al. [2016]
Small-conductance Ca-activated K ḡSK (maximum conductance) Köhler et al. [1996]
Calcium (Ca) Channels
High-voltage-activated Ca ḡCa HVA (maximum conductance) Reuveni et al. [1993], Sayer et al. [1990], Dichter and Zona [1989]
Low-voltage-activated Ca ḡCa LVA (maximum conductance) Avery and Johnston [1996], Randall and Tsien [1997]
Hyperpolarization-activated current ḡIh (maximum conductance) Kole et al. [2006]

Calcium Dynamics decay CaDynamics (Ca decay constant), Destexhe et al. [1994]
gamma CaDynamics (% of free Ca)

Table 5: Active mechanisms and their respective parameters used for constructing e-models
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Figure 7: Ion channels currents used in cell models recorded for different voltage clamp injec-
tions. A calcium dynamics evolution with time is shown in black.

5.1 Comparison of generalization results between current and pre-
vious edition of the L5PC e-models

To perform generalization comparison we used the same set of e-features and same morphologies
for two e-models: optimized in this work and previously reported L5PC e-model [Markram et al.,
2015]. As a metric for this comparison we report the fraction of passed morphologies for each
version of the e-models Fig.10.

The number of e-features computed in Markram et al. [2015] were smaller, without au-
tomatic holding and current threshold detection, and show a worse generalization ability on
the morphologies used in this paper. Notice that these two e-models were trained on different
exemplar morphologies, both present in the current set of morphologies.
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E-type Soma AIS Dendrites
cADpyr CaDynamics CaDynamics CaDynamics

HVA Ca HVA Ca HVA Ca
LVA Ca LVA Ca LVA Ca
Kv3.1 Kv3.1 Kv3.1 (Apical)

Ca-activated K Ca-activated K
Persistent K Persistent K
Transient K Transient K
Transient Na Transient Na Transient Na (Apical; Decaying)

Persistent Na
HCN HCN (Apical and Basal;

Exponential increasing towards terminals)
bNAC, bAC, cNAC, cACint CaDynamics CaDynamics CaDynamics

HVA Ca HVA Ca HVA Ca
LVA Ca LVA Ca LVA Ca

Ca-activated K Ca-activated K Ca-activated K
Transient Na Transient Na

Kv3.1 Kv3.1
Persistent K Persistent K
Transient K Transient K

HCN HCN (Exponential increasing towards terminals)
dNAC CaDynamics CaDynamics CaDynamics

HVA Ca HVA Ca HVA Ca
LVA Ca LVA Ca LVA Ca

Ca-activated K Ca-activated K Ca-activated K
Transient Na Transient Na

Kv3.1 Kv3.1
Persistent K Persistent K
Transient K Transient K

HCN HCN (Exponential increasing towards terminals)
D-type K D-type K D-type K

bIR, cIR, bSTUT,cSTUT Passive Passive Passive
CaDynamics CaDynamics CaDynamics

HVA Ca HVA Ca HVA Ca
LVA Ca LVA Ca LVA Ca

Ca-activated K Ca-activated K Ca-activated K
Transient Na Transient Na

Kv3.1 Kv3.1
Persistent K Persistent K
Transient K Transient K

HCN HCN (Exponential increasing towards terminals)
Stochastic Kv Stochastic Kv Stochastic Kv

dSTUT CaDynamics CaDynamics CaDynamics
HVA Ca HVA Ca HVA Ca
LVA Ca LVA Ca LVA Ca

Ca-activated K Ca-activated K Ca-activated K
Transient Na Transient Na

Kv3.1 Kv3.1
Persistent K Persistent K
Transient K Transient K

HCN HCN (Exponential increasing towards terminals)
Stochastic Kv Stochastic Kv Stochastic Kv

D-type K D-type K D-type K

Table 7: Recipe for each e-type: active parameters and their compartmental placement.
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eFEL Feature Description
Spikecount Number of spikes in the trace, including outside of stimulus

interval
maximum voltage from voltagebaseDifference between maximum voltage during stimulus and

voltage base
voltage base The average voltage during the last 10% of time before the

stimulus.
voltage after stim The mean voltage after the stimulus in

(stim end + 25%*end period, stim end + 75%*end period)
AP amplitude, APlast amp,
AP1 amp, AP2 amp The relative height of the action potential from spike onset
AHP depth Relative voltage values at the first after-hyperpolarization
mean frequency The mean frequency of the firing rate
inv time to first spike 1.0 over time to first spike; returns 0 when no spike
time to last spike time from stimulus start to last spike
inv first ISI, inv second ISI,
inv third ISI, inv fourth ISI,
inv fifth ISI, inv last ISI 1.0 over first/second/third/fourth/fith/last ISI; returns 0

when no ISI
AP duration half width Width of spike at half spike amplitude
ohmic input resistance vb ssse The ratio between the voltage deflection (between voltage

base
and steady-state voltage at stimend) and stimulus current

voltage deflection The voltage deflection between voltage base
and steady-state voltage at stimend

voltage deflection begin The voltage deflection between voltage base
and steady-state voltage soon after stimulation start.

decay time constant after stim The decay time constant of the voltage right after the stimulus
holding current holding current injected to stabilize resting membrane poten-

tial
threshold current minimum current required to generate an AP

found by bisection search
AHP depth abs Absolute voltage values at the first after-hyperpolarization
burst number The number of bursts
ISI CV The coefficient of variation of the ISIs
time to first spike Time from the start of the stimulus to the maximum of the

first peak
time to second spike Time from the start of the stimulus to the maximum of the

second peak

Table 8: Descriptions of the eFEL feature used for optimizations and validations of emodels.
More details for the features can be found at https://efel.readthedocs.io/en/latest/

eFeatures.html.
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Figure 8: E-feature scores for all e-models optimized. E-feature descriptions can be found in
Table 8. Blue represents a low and yellow a high score value, respectively.
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Figure 9: Examples of sensitivity analysis in L5PC models for the several parameters
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value of the e-feature score. A. Sensitivity analysis for the e-feature representing maximum
voltage of the bAP. B. Sensitivity analysis for the mean AHP depth feature.
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for four morphological m-types of L5PC.
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