Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ion Selective and Water Resistant Cellulose Nanofiber/MXene Membrane Enabled Cycling Zn Anode at High Currents
 
research article

Ion Selective and Water Resistant Cellulose Nanofiber/MXene Membrane Enabled Cycling Zn Anode at High Currents

Xu, Wangwang
•
Liao, Xiaobin
•
Xu, Weina
Show more
February 25, 2023
Advanced Energy Materials

Aqueous rechargeable zinc ion batteries (ZIBs) are regarded as a promising candidates for next-generation energy storage devices but strongly hindered by the limited utilization of the zinc metal anode (below 5%) due to the active water/anion corrosion. Herein, an ion selective and water-resistant cellulose nanofiber (CNF)/MXene composite membrane has been developed through molecular sieving to restrict active water and anions from the electrode/electrolyte interface through dehydration of zinc ions, avoiding the water/anion-induced corrosion/decomposition. In this way, the CNF/MXene@Zn anode exhibits significantly enhanced coulombic efficiency (99.5 % at 10 mA cm(-2)) and low voltage hysteresis. Moreover, coated with CNF/MXene composite membrane, zinc symmetric batteries can be operated at the extremely high current of 100 mA cm(-2) and ultra-high Zn utilization of 88.2% to achieve record-high cumulative plating capacity of 12 Ah cm(-2). Furthermore, the full vanadium dioxide (VO2) |CNF/MXene@Zn batteries exhibit a high capacity of 357 mAh g(-1) at 2 A g(-1) and retain 93.3% of the capacity after 500 cycles. Moreover, at negative/ positive capacity (N/P) ratio of 2.8, the CNF/MXene membrane coated zinc is able to stably cycle for 100 cycles, demonstrating the potential for high energy zinc battery. This designed CNF/MXene membrane enables ZIBs as viable energy storage devices for practical applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41699-023-00373-5.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.34 MB

Format

Adobe PDF

Checksum (MD5)

71b943d54acee29232aedb2817a1947c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés