Explaining multiple patches of aquatic vegetation through linear stability analysis
Aquatic vegetation is ubiquitous in lowland rivers, and it is typically present in the shape of spatial self-organized patches of biomass. In this work, we mathematically define the threshold conditions for the incipient formation of self-organized vegetated patterns in the shape of central or multiple row patches. The analysis is carried out through a linear stability analysis whereby the 2D eco-hydrodynamic model is linearized and the growth rate of small-scale perturbations is evaluated considering a basic state represented by an initially uniformly vegetated and straight channel having a certain aspect ratio and Froude number. Results illustrate that, for given vegetation properties, instability arises when both the Froude number and the aspect ratio are higher than a given threshold; in this case, self-organization occurs, and spatial patterns of patches will develop according to the wavelength associated to the maximum growth rate. Moreover, instability and self-organization take place when the undisturbed vegetation density is lower than upper bound; this suggests that densely vegetated channels, as in the case of rivers populated by invasive species, will not experience the formation of any spatial patterns.
s10652-022-09843-8.pdf
publisher
openaccess
CC BY
1.47 MB
Adobe PDF
f4acaedfddd8e7fddfcc236446091ad6