
On Algebraic Array Theories

Rodrigo Rayaa,∗, Viktor Kunčaka

aSchool of Computer and Communication Science
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

Automatic verification of programs manipulating arrays relies on specialised
decision procedures. A methodology to classify the theories handled by these
procedures is introduced. It is based on decomposition theorems in the style
of Feferman and Vaught. The method is applied to obtain an extension of
combinatory array logic that is closed under propositional operations and
Hoare triples. A classification according to expressiveness of six different
fragments studied in the literature is given.

Keywords: decision procedures, satisfiability modulo theories, arrays,
Feferman-Vaught, composition theorems

1. Introduction

The problem of specifying and verifying programs is nearly as old as the
study of computer science itself. Turing [43] was first to describe the method
of annotations as a way of proving the correctness of computer programs.
Independently, McCarthy put forward the idea of proving the correctness of
programs automatically. Floyd [19] synthesized both ideas in the verifying
compiler: a computer program that would automatically check programs
with annotations.

King [25] was the first to implement a verifying compiler. He observed
that the verification of programs involving arrays was possibly the most se-
rious weakness of the system and gave concrete examples where the naive
simplification routines of his theorem prover yielded the verification of sim-
ple array programs unfeasible. He proposed to use the translation of array

∗Corresponding author.
Email-addresses: rodrigo.raya@epfl.ch, viktor.kuncak@epfl.ch

Preprint submitted to Logical and Algebraic Methods in Programming March 8, 2023

programs to first-order logic proposed by McCarthy [32] and to design spe-
cialised decision procedures for the resulting theories.

A plethora of array theories and decision procedures have appeared since
(see [41, 8, 20, 22, 15, 2, 3, 14, 21, 1, 35] and the references therein).

However, modern verifying compilers [30, 42, 44, 45] mostly rely on the
decision procedures implemented in industrial-strength satisfiability modulo
theories (SMT) solvers [16, 5]. Both Z3 and the CVC family of SMT solvers
only implement a fragment of the theory of arrays known as combinatory
array logic (CAL) [15]. This theory extends the extensional theory of arrays
with first-order symbols interpreted pointwise.

This paper studies combinatory array logic from an algebraic perspective
as the set of sentences true in certain power structure. We characterise the
expressivity of this fragment by decomposing the satisfiability problem of
array formulae into the satisfiability problem of index theory formulae and
the satisfiability problem of formulae in the theory of elements. This decom-
position technique is reminiscent of a family of theorems in first-order model
theory known as Feferman-Vaught theorems in honor of their originators [17].

As a result, we obtain a modular framework in which to express a family
of array theories that have been studied in the literature [41, 15, 21, 1]. The
insights provided by the decomposition technique allow us to extend these
theories: we are able to express the relations on sets of indices definable in
the weak second-order theory of one successor [11] while leaving unchanged
the computational complexity of the underlying satisfiability problem.

2. Preliminaries

We recall next some concepts from first-order logic and computational
complexity which make the paper self-contained.

2.1. First-order Logic

The formal theories we study are written using a first-order language.

Definition 1. A first-order language is one whose logical symbols are ¬,∧,∨, ∀
and ∃, whose terms are either variables, constants or function symbols ap-
plied to terms and whose formulas are either atomic (relation symbols applied
to terms) or general (atomic formulas and inductively, from formulas A,B,
we get new formulae ¬A,A ∧ B and A ∨ B and from a formula A and a
variable symbol x we get the new formulae ∃x.A and ∀x.A).

2

An occurrence of a variable in a formula is free if there is no occurrence of
that variable under a quantifier on the path of the syntax tree of the formula
reaching the occurrence of the variable. A formula without free variables is
a sentence.

It is customary to study the computational properties of theories in terms
of the quantifiers used. To this end one introduces the prenex form of for-
mulae [37] which consists of a string of quantifiers (called the prefix of the
formula) followed by a quantifier-free formula (known as the matrix of the
formula) and proves that every first-order formula is equivalent to a formula
in prenex normal form.

The computational properties of logical theories have been the object of
intense research since the pioneering work described in [18]. This research
showed that traditional decidable theories studied by logicians were strongly
intractable in practice. For the sake of example, [40] proved that a circuit
deciding the weak monadic second-order theory of one successor would not
fit in the known universe.

The computational complexity usually increases with the number of quan-
tifier alternations. For this reason, in applications one often focus on the ex-
istential fragment of theories: the subset of formulae of a theory whose prefix
is made of existential quantifiers only. This is the case for the applications
in program verification that are considered in this work [25, 7, 27].

More precisely, we will study existential fragments of theories defined
semantically in terms of the models that the formulae in the theory satisfy.

Definition 2. A structure A is a tuple with four components: a set A called
the domain of A; a set of constant elements of A; for each positive integer
n, a set of n-ary relations on A (i.e. subsets of An), each of which is named
by one or more n-ary relation symbols and for each positive integer n, a set
of n-ary operations on A (i.e maps from An to A), each of which is named
by one or more n-ary function symbols.

As announced, we will focus on the existential fragment of theories defined
by some model.

Definition 3. The existential theory Th∃∗(A) of a structure A, is the set of
existentially quantified formulas ψ of L such that A |= ψ. A solution of the
formula ψ is a satisfying assignment to its existential variables.

Because we focus on existential fragments, the computational problems
we study are similar to problems in predicate clause logic or propositional

3

logic [9]. Strictly speaking when determining membership in Th∃∗(A) we
are studying the validity problem for the existential fragment, while we are
solving the satisfiability problem if we consider the same fragment as part of
predicate clause logic.

More importantly, one can define normal forms for the matrix of the
formulae in the studied fragment. The familiar notion of disjunctive nor-
mal form is used in the decision procedures below to reduce the satisfiability
problem of the existential fragment to the satisfiability problem of a conjunc-
tion of literals. The notion of Stone normal form [24] is implicitly used when
studying the corresponding theories with the cardinality operator on index
sets. These are defined in a completely analogous way to the propositional
case by forgetting the additional first-order structure.

2.2. Computational Complexity

We assume basic definitions in the theory of computation [4, 38] such as
NP-hardness and NP-completeness. We will use the notion of polynomial-
time verifier which is equivalent to that of non-deterministic polynomial-
time procedure with the difference that the non-deterministic computation
is encoded as a certificate.

Definition 4. A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial
p : N → N and a polynomial-time Turing machine V , called the verifier for L
such that for every x ∈ {0, 1}∗, x ∈ L if and only if there exists C ∈ {0, 1}p(|x|)
such that V (x,C) = 1. If x ∈ L and u ∈ {0, 1}p(|x|) satisfy V (x,C) = 1, then
C is called a certificate for x.

It is straightforward to generalise the notion of polynomial-time verifier
so that it outputs a bit-string rather than a single bit. We use this notion
to define NP-reductions which we use to formalise the idea that it suffices to
solve formulae of the existential fragment that are conjunctions of literals.

Definition 5. A language L ⊆ {0, 1}∗ is NP-reducible to a language L′ ⊆
{0, 1}∗, written L ≤np L

′, if there is a polynomial-time verifier V such that
for every x ∈ {0, 1}∗, x ∈ L if and only if there exists a certificate C such
that V (x,C) ∈ L′.

Lemma 6. The relation ≤np satisfies the following properties:

1. If L ≤np L
′ and L′ ∈ NP then L ∈ NP.

2. If L ≤np L
′ and L′ ≤np L

′′ then L ≤np L
′′.

4

Proof. Ad 1), by hypothesis, we have a verifier V satisfying Definition 5 for
L ≤np L

′. We also have a verifier V ′ accepting L′. Then V ′′ = V ′ ◦ V is a
verifier for L. Ad 2), if V satisfies Definition 5 for L ≤np L

′ and V ′ satisfies
Definition 5 for L′ ≤np L

′′ then V ′ ◦V satisfies Definition 5 for L ≤np L
′′.

The following lemma allows our decision procedures to guess with a dis-
junct from the disjunctive normal form of the existential formula given as
input.

Lemma 7. Let ψ be a first-order formula in prenex form and C a disjunct
of the DNF form of its matrix. Then |C| = O(|ψ|).

Proof. The DNF conversion only affects the propositional structure of the
formula. Thus, in C one may at most have the relations occurring in ψ and
their negations. In the worst case, one gets at most 2|ψ| symbols accounting
for the relations and at most 4|ψ| symbols accounting for the conjunctions
and negations. Therefore, |C| ≤ 6 · |ψ|.

The decision procedure for this problem will start by guessing a disjunct
of the DNF form of the input formula. To ensure this can be done by a
polynomial-time verifier we need to ensure that the size of that disjunct is
polynomial in the size of the input formula.

Lemma 8. There is NP-reduction from the satisfiable formulae of the ex-
istential fragment of a theory to the satisfiable formulae of the existential
fragment of the theory in conjunctive form.

Proof. We define a verifier V that given an input x and a certificate w,
interprets the certificate as a disjunct φ of the DNF of x and checks that it is
so. To check that the guessed disjunct is part of some DNF the verifier only
needs to check the formula prop(φ) =⇒ prop(x), where prop is a function
that transforms the original formula into propositional one syntactically: two
atomic formulae are mapped to the same variable if and only if they coincide
syntactically.

V is a polynomial-time verifier. Indeed, if x is satisfiable then there must
exist a satisfiable disjunct in its DNF form. By Lemma 7, this disjunct of the
DNF form can be written in linear space. Thus, there exists a certificate C
of polynomial-size encoding such disjunct. Thus, the output of V (x,C) is a
satisfiable formula in conjunctive form. Conversely, if the output of V (x,C)
is a satisfiabile formula in conjunctive form, by the check that V performs,

5

it follows that V (x,C) is a disjunct of some DNF form of x. It follows that
x itself was also satisfiable.

3. Power Structures

3.1. Definition of Power Structures

Given a first-order language L, a non-empty set I and a structure M
with carrier M , a power structure is a special case of product structure [23,
Chapter 9] were all components are equal.

Definition 9. The power structure Π associated to L, I and M has the
function space M I as domain and interprets the symbols of the language L
as follows. For each constant c and i ∈ I, cΠ(i) = cM. For each function
symbol f , i ∈ I, n ∈ N and (a1, . . . , an) ∈ (M I)n,

fΠ(a1, . . . , an)(i) = fM(a1(i), . . . , an(i))

For each relation symbol R, n ∈ N and (a1, . . . , an) ∈ (M I)n,

(a1, . . . , an) ∈ RΠ if and only if for every i ∈ I, (a1(i), . . . , an(i)) ∈ RM

Notation 10. We abbreviate the tuple (a1, . . . , an) ∈ (M I)n by a and the
tuple (a1(i), . . . , an(i)) by a(i).

The semantics of the language used for power structures is thus particu-
larly simple: constants, functions and relations are interpreted pointwise. In
spite of its simplicity, the existential fragment of the theory of a power struc-
ture is precisely the logical fragment that [15] automates under the name of
combinatory array logic and which is implemented in the widely used Z3 and
CVC family of SMT solvers. In the following section, we give a simple proof
of the complexity of the decision problem of this fragment. It is the base of
posterior developments.

3.2. Complexity of the Existential Fragment of Power Structures

In this section, we study the complexity of the satisfiability problem for
the set Th∃∗(Π). We show that the satisfiability problem decomposes into
that of the theory Th∃∗(M) and that of the theory Th∃∗(⟨I⟩). The latter is
trivial since it contains no sentences.

Theorem 11. Th∃∗(M) ∈ NP if and only if Th∃∗(Π) ∈ NP.

6

Proof. 1) Assume that VC is a polynomial time verifier for Th∃∗(M). Figure
1 gives a polynomial time verifier V for Th∃∗(Π). In what follows, we will use
x to refer to the formula to be satisfied and w for the certificate or witness
that the verifier takes. tij are terms in the logical language L. We use aj to
indicate the arity of the relation symbol Rj. t is a natural number greater or
equal than one. We show that the machine is a verifier for Th∃∗(Π):

On input ⟨x,w⟩:

1. Take w and interpret it as

• A partition P = {p1, . . . , pt} of {l + 1, . . . , k}.

• Certificates C0, . . . , Ct for VC on inputs

φ0 ≡ ∃x1, . . . , xn.
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai

)

φd ≡ ∃x1, . . . , xn.
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai

) ∧ ∧
e∈pd

¬Re(t
e
1, . . . , t

e
ae)

for each pd ∈ P .

where the input x is a term in conjunctive form

φ ≡ ∃x1, . . . , xn.
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai

) ∧
k
∧

j=l+1
¬Rj(t

j
1, . . . , t

j
aj

)

2. If t > |I| then reject.

3. Otherwise, run VC with ⟨φd, Cd⟩ for d = 0, . . . , t.

4. Accept iff all runs accept.

Figure 1: Verifier for Th∃∗(Π)

• w has polynomial size in |x|:

– By Lemma 7, |φ| = O(|x|).
– Thus, k = O(|x|).

7

– P = O(|x|2) since P can be written with k log(k) + k bits.

– Since |Cd| = O(|φd|cd) and |φd| ≤ |φ| = O(|x|), |Cd| = O(|x|cd).

– Thus, |w| = |φ| + |P | +
∑

d=0,...,t

|Cd| = O
(
|x|max{2,max

d
cd}
)

.

• V runs in polynomial time in |x|.

– Building the list of φd is O(|x|2).
– As above, |φd| ≤ |φ| = O(|x|).
– So each call to VC runs in O(|x|f) (VC is polynomial time).

– Like before, k = O(|x|).

– Therefore, V runs in O
(
|x|max{2,f+1}

)
.

• V is a verifier for Th∃∗(Π).

⇒) If x ∈ Th∃∗(Π) then writing x in prenex DNF form, there is at
least one disjunct φ (as in figure 1) true in the product. Thus, there is
s ∈M I satisfying

. .

(ti1
Π

[x 7→ s], . . . , tiai
Π

[x 7→ s]) ∈ RΠ
i

. .

(tj1
Π

[x 7→ s], . . . , tjaj
Π

[x 7→ s]) /∈ RΠ
j

. .

Using the semantics of products this means

. .

∀r ∈ I.(ti1
M

[x 7→ s(r)], . . . , tiai
M

[x 7→ s(r)]) ∈ RM
i

. .

∃r ∈ I.(tj1
M

[x 7→ s(r)], . . . , tjaj
M

[x 7→ s(r)]) /∈ RM
j

. .

So there is a map r : {l+1, . . . , k} → I that assigns to each formula, one
index where it holds. r induces a partition P = r−1(I) of {l+ 1, . . . , k}

8

with t = |P | ≤ min(|I|, k − l). Each part pd = {e1, . . . , em} and each
associated index rd = r(ei), satisfy the following system

. .

(ti1
M

[x 7→ s(rd)], . . . , t
i
ai

M
[x 7→ s(rd)]) ∈ RM

i

. .

(te11
M[x 7→ s(rd)], . . . , t

e1
ae1

M[x 7→ s(rd)]) /∈ RM
e1

. .

(tem1
M[x 7→ s(rd)], . . . , t

em
aem

M[x 7→ s(rd)]) /∈ RM
em

Equivalently, for each d ∈ {1, . . . , t}, M |= φd[x 7→ s(rd)]. For d = 0,
we set

r0 =

{
any index i ∈ I if t = 0

some rd ∈ {r1, . . . , rt} if t > 0

Then M |= φ0[x 7→ s(r0)]. By definition of VC , there are polynomially-
sized certificates C0, . . . , Ct such that VC accepts ⟨φd, Cd⟩ for each d.
Thus V accepts ⟨x, ⟨φ, P, C0, . . . , Ct⟩⟩.
⇐) Let w = ⟨φ, P, {Cd}d∈{0,...,t}⟩ be a certificate such that V accepts
⟨x,w⟩. Then, by step 2, t = |P | ≤ |I| and for each d ∈ {0, . . . , t}, VC ac-
cepts ⟨φd, Cd⟩, i.e. M |= φd. So there are solutions x·i = (x1i, . . . , xni)

t

to the formulas

φ0 ≡ ∃x10, . . . ,∃xn0.
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai

)

φd ≡ ∃x1d, . . . ,∃xnd.
l
∧
i=1

Ri(t
i
1, . . . , t

i
si

) ∧ ∧
e∈pd

¬Re(t
e
1, . . . , t

e
ae)

Fix distinct i1, . . . , it ∈ I. Consider the n× |I| matrix with entries

sji =

{
xji if i ∈ {i1, . . . , it}
xj0 otherwise

We show that the rows of this matrix s = {s1, . . . , sn} are solutions of
φ in the product structure, i.e.

. .

(ti1
Π

[x 7→ s], . . . , tiai
Π

[x 7→ s]) ∈ RΠ
i

. .

(tj1
Π

[x 7→ s], . . . , tjaj
Π

[x 7→ s]) /∈ RΠ
j

. .

9

Using the definition of product, it is sufficient to show

. .

∀r ∈ I.(ti1
M

[x 7→ s(r)], . . . , tiai
M

[x 7→ s(r)]) ∈ RM
i

. .

∃r ∈ I.(tj1
M

[x 7→ s(r)], . . . , tjaj
M

[x 7→ s(r)]) /∈ RM
j

. .

For i ∈ {1, . . . , l} and each r ∈ I, the following formula needs to hold

(ti1
M

[x 7→ s(r)], . . . , tisi
M

[x 7→ s(r)]) ∈ RM
i

If r ∈ {i1, . . . , it} then s(r) = x·r (i.e. all x1r, . . . , xnr) and the equation
holds since M |= φr[x·r]. Otherwise, s(r) = x·0 and the equation holds
since M |= φ0[x·0].

For j ∈ {l + 1, . . . , k} and some r ∈ I, the following formula needs to
hold

(tj1
M

[x 7→ s(r)], . . . , tjsj
M

[x 7→ s(r)]) /∈ RM
j

We take r = id such that j ∈ pd. Then s(r) = x·r and the equation
holds since M |= φr[x·r].

2) The converse direction is trivial. For details see [35].

4. The Cardinality Operator

The technique of Section 3 is closer to the methods of Mostowski [34]. He
gave a decision procedure to reduce the (full) first-order theory of a power
structure to the first-order theory of the elements and the first-order theory of
the indices. Feferman and Vaught [17] generalised this by reducing the first-
order theory of product structures to the first-order theory of the elements
and the second-order theory of the indices (that is quantification over set
variables is allowed). In particular, they obtained decision procedures that
would apply to index theory signatures containing the cardinality operator.
Being able to specify counting properties is very important in verification
(see for instance [13]) and in particular in verification using array theories
[14, 1].

This section shows how to combine a certain second-order theory of in-
dices including the cardinality operator with the existential fragment of the
first-order theory of power structures.

10

4.1. Explicit Sets of Indices

The intuition behind Theorem 11 is that the verifier of Figure 1 is solving
constraints on the power structure indices. This is schematically presented
in Figure 2. The figure represents a Venn region determined by applying
Boolean operations (union, intersection and complement) to some set vari-
ables. These variables are interpreted to be sets of indices of the power
structure. All indices must remain within the boundaries of the main re-
gion A. This region corresponds to the positive literals of the formula φ of

Figure 1:
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai

). The negative literals
k
∧

j=l+1
¬Rj(t

j
1, . . . , t

j
aj

) when

interpreted with the semantics of the power structure correspond to existen-
tial constraints. These effectively require a cardinality greater or equal than
one in certain subregions of A.

Figure 2: An example Venn region with product constraints.

To generalize Theorem 11 we use the logic BAPA [28], whose language
allows to express Boolean algebra and cardinality constraints on sets. The
satisfiability problem for the quantifier-free fragment of BAPA, which we will
denote by QFBAPA, is in NP (see Section 3 of [29]).

Figure 3 shows the syntax of the fragment. F presents the Boolean
structure of the formula, A stands for the top-level constraints, B gives the
Boolean restrictions and T the Presburger arithmetic terms. U represents
the universal set and MAXC gives the cardinality of U . For now, we assume
this cardinality to be finite. In Section 5, we show that this restriction can
be lifted.

For our proofs we will rely on the method of [29] and on the following
property of integer conic hulls

11

F ::= A |F1 ∧ F2 |F1 ∨ F2 | ¬F
A ::= B1 = B2 |B1 ⊆ B2 |T1 = T2 |T1 ≤ T2 |K dvd T

B ::= x | ∅ | U |B1 ∪B2 |B1 ∩B2 |Bc

T ::= k |K |MAXC |T1 + T2 |K · T | |B|
K ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

Figure 3: QFBAPA’s syntax

Definition 12. Given a subset S ⊆ Rn, the integer conic hull of S is the
set:

intcone(S) =

{
t∑

i=1

λisi

∣∣∣t ≥ 0, si ∈ S, λi ∈ N

}
Theorem 13 (Eisenbrand-Shmonin). Let X ⊆ Zn be a finite set of integer
vectors and b ∈ intcone(X). Then there exists a subset X ′ ⊆ X such that
b ∈ intcone(X

′) and |X ′| ≤ 2n log(4nM) where M = maxx∈X ∥x∥∞.

4.2. Complexity of the Existential Fragment of QFBAPA with Interpreted
Sets

We now extend the NP membership of product structures given in The-
orem 11 and of QFBAPA to the situation where we interpret QFBAPA sets
as subsets of the set I in which quantifier-free formulae hold. As we saw in
Section 4.1, this can be seen as a generalisation from cardinality constraints
of size one to arbitrary linear arithmetic restrictions.

Definition 14. We consider the satisfiability problem for QFBAPA formulae
F whose set variables are index sets defined by quantifier-free formulas φi

of L applied to either component theory constants or to components of the
power structure variables

∃c1, . . . , cm.∃x1, . . . , xn.

F (S1, . . . , Sk) ∧
k∧

i=1

Si = {r ∈ I | φi(x1(r), . . . , xn(r), c1, . . . , cm)}

We call this problem interpreted QFBAPA, which we write as QFBAPAI.

12

Theorem 15. Th∃∗(M) ∈ NP if and only if QFBAPAI ∈ NP.

Proof. 1) Let VQFBAPA be a polynomial time verifier for QFBAPA and let VC
be a polynomial time verifier for the component theory. Figure 4 gives a
verifier V for QFBAPAI. We abbreviate (x1, . . . , xn) by x and (c1, . . . , cm) by
c.

On input ⟨x,w⟩:

1. Interpret w as:

(a) a list of indices i1, . . . , iN ∈ {0, . . . , 2e − 1} where e is the
number of set variables in y.

(b) a certificate C for VC on input y defined below.
(c) a certificate C ′ for VPA on input y′ defined below.
(d) a bit b indicating if the solution sets cover the whole I.

2. Set y = ∃c, x1, . . . , xN .
∧

βj∈{i1,...,iN}

k∧
i=1

φi(xj, c)
βj(i) (∗).

3. Set y′ = ∃S ′
1, . . . , S

′
k.F (S ′

1, . . . , S
′
k)∧

∧
βj∈{i1,...,iN}

k⋂
i=1

S
′βj(i)
i ̸= ∅ (∗∗).

4. If b = 0 then set (∗) = ∧ ¬
∨

βj∈{i1,...,iN}

k∧
i=1

φi(x0, c)
βj(i) and add x0

as a top-level existential quantifier.

If b = 1 then set (∗∗) = ∧
⋃

βj∈{i1,...,iN}

k⋂
i=1

S
′βj(i)
i = I.

5. Run VC on
〈
y, C

〉
.

6. Run VQFBAPA on
〈
y′, ⟨{i1, . . . , iN}, C ′⟩

〉
.

7. Accept iff all runs accept.

Figure 4: Verifier for QFBAPA interpreted over index-sets.

13

⇒) If x ∈ QFBAPAI then there exist c, s satisfying

F (S1, . . . , Sk) ∧
k∧

i=1

Si = {r ∈ I|φi(s(r), c)}

Define Si := {r ∈ I|φi(s(r), c)}. Then, the method of [29] applied to

F (S1, . . . , Sk) yields a formula G ∧
∧p

i=0 |bi| = ki. Using |bi| =
∑
β|=bi

∣∣∣ k⋂
i=1

S
β(i)
i

∣∣∣
and setting pβ :=

k⋂
i=1

S
β(i)
i , lβ :=

∣∣∣pβ∣∣∣, yields G∧
p∧

i=0

2e−1∑
j=0

JbiKβj
·lβj

= ki. Remove

those β where lβ = 0. Since

pβ =
k⋂

i=1

{r ∈ I|φi(s(r), c)}β(i) =

{
r ∈ I

∣∣∣∣∣
k∧

i=1

φi(s(r), c)
β(i)

}

this includes those β such that
k∧

i=1

φi(s(r), c)
β(i) is not satisfiable. We obtain

a reduced set of indices R ⊆ {0, . . . , 2e − 1} where G ∧
p∧

i=0

∑
β∈R

JbiKβ · lβ = ki.

Eisenbrand-Shmonin’s theorem yields a polynomial family of indices such

that G ∧
p∧

i=0

∑
β∈{i1,...,iN}⊆R

JbiKβ · l′β = ki for non-zero l′β.

For each β ∈ {i1, . . . , iN}, since lβ ̸= 0, there exists rβ ∈ I such that
k∧

i=1

φi(s(rβ), c)β(i). So the formula y without (*) is satisfied.

The satisfiability of the cardinality restrictions on l′β implies the existence
of sets of indices S ′

i such that for each β ∈ {i1, . . . , iN}, |p′β| = l′β. Observe
that |I| =

∑
β∈R

lβ. Distinguish two cases:

• If |I| >
∑

β∈{i1,...,iN}
l′β then there is at least one index r0 such that s(r0)

satisfies
k∧

i=1

φi(s(r0), c)
β(i) for β /∈ {i1, . . . , iN}. Therefore, the formula

y with (*) is satisfied. In this case, define:

s′(r) =

{
s(rβ) if r ∈ p′β and β ∈ {i1, . . . , iN}
s(r0) otherwise

14

and choose b = 0.

• If |I| =
∑

β∈{i1,...,iN}
l′β then define:

s′(r) =
{
s(rβ) if r ∈ p′β and β ∈ {i1, . . . , iN}

Here we choose b = 1.

In any case, the formula y that VC receives as input is satisfied. Since N
is polynomial in |x|, this gives a polynomially-sized certificate C such that
VC accepts ⟨y, C⟩ in polynomial time.

Let S ′′
i = {r ∈ I|φi(s

′(r), c)}. Then S ′′
1 , . . . , S

′′
k satisfy y′ by construction

• Observe that for each β ∈ {i1, . . . , iN}, p′′β = p′β.

• For each β ∈ {i1, . . . , iN}, p′′β ̸= ∅, since l′β ̸= 0.

• If b = 1 then
⋃

β∈{i1,...,iN}
p′′β = I since |I| =

∑
β∈{i1,...,iN}

l′β.

• The cardinality restrictions are satisfied by definition.

Again, since N is polynomial in |x|, |y′| is polynomial in |x| too. By the
above, it is also satisfiable. Thus, there exists a polynomially-sized certificate
C ′ for VPA such that VQFBAPA accepts ⟨{i1, . . . , iN}, C ′⟩ in polynomial time.
So V accepts ⟨x, ⟨{i1, . . . , iN}, C, C ′, b⟩⟩ in polynomial time.

⇐) If V accepts ⟨x,w⟩ in polynomial time then

•
〈
y, C

〉
is accepted by VC , so there is a tuple c and for each β ∈

{i1, . . . , iN}, there are tuples sβ, such that
k∧

i=1

φi(sβ(1), . . . , sβ(n), c)β(i).

• ⟨y′, ⟨{i1, . . . , iN}, C ′⟩⟩ is accepted by VQFBAPA, so there exist sets S ′
i such

that:

F (S ′
1, . . . , S

′
k) ∧

∧
β∈{i1,...,iN}

k⋂
i=1

S
′β(i)
i ̸= ∅

15

Interpreting S ′
i as index sets, we define an array s distinguishing two

cases:

• If b = 0 then VC accepts:

〈
∃c,∃x1, . . . , xN , x0. . . .¬

∨
β∈{i1,...,iN}

k∧
i=1

φi(x0, c)
β(i), C

〉
Let s0 be a satisfying tuple for x0. Define:

s(r) =

{
sβ if r ∈ p′β and β ∈ {i1, . . . , iN}
s0 otherwise

• If b = 1 then S ′
i satisfies

⋃
β∈{i1,...,iN}

k⋂
i=1

S
′β(i)
i = I. Define:

s(r) =
{
sβ if r ∈ p′β and β ∈ {i1, . . . , iN}

Then, by construction, c, s form a solution of:

∃c, x.F (S1, . . . , Sk) ∧
k∧

i=1

Si = {r ∈ I | φi(x(r), c)}

For each β ∈ {i1, . . . , iN}:

pβ =
{
r ∈ I

∣∣∣ k∧
i=1

φ(s(r), c)β(i)
}

= pβ′

so the cardinality conditions are met.

2) As in Theorem 11.

From a syntactic perspective, Theorem 15 shows that the formula

∃S1, . . . , Sk.F (S1, . . . , Sk)∧∃x1, . . . , xm.
k∧

i=1

Si = {n ∈ N|φi(x1(n), . . . , xm(n))}

16

is equivalent to the formula

∃N ∈ {0, 1}log2(p(|F |)), β1, . . . , βN ∈ {0, 1}k, b ∈ {0, 1}.

∃x1, . . . , xm.
∧

βj∈{i1,...,iN}

k∧
i=1

φi(xj)
βj(i) ∧

(
b ∨ ¬

∨
βj∈{i1,...,iN}

k∧
i=1

φi(x0)
βj(i)

)

∧∃S1, . . . , Sk.F (S1, . . . , Sk) ∧

(
¬b ∨

⋃
βj∈{i1,...,iN}

k⋂
i=1

S
βj(i)
i = I

)

for p a polynomial and |F | the size of formula F . The advantage of this form
is that the conjuncts do not share variables. Thus, the part of the formula
referring to the elements in the component of the power structure and the
part of the formula referring to the index set can be solved independently.1

A closely related result can be found in [1, Section 5] in the context of
the study of array theories. The more general setting of power structures
allows to generalize this result to an arbitrary index and element theories
while retaining the NP bound.

Theorem 15 is also interesting from the point of view of combination
of theories as it extends the results of [46] in an unexpected direction by
interpreting the shared set variables as sets of elements.

5. Weak Power Structures

In this section, we lift the restriction on the size of the universe of the
set of indices in the index theory. Then we recall the definition of weak
power structures. Adapting the theory of Section 4, we will show that the
existential fragment of the first-order theory of a weak power structure is also
in NP.

5.1. Complexity of the Existential Fragment of QFBAPA with the Finiteness
predicate

We extend the language of QFBAPA in Figure 3 with the ability of spec-
ifying that some subsets are finite or infinite. Figure 5 shows the syntax
of the fragment, which we call QFBAPAℵ0

. A formula F is a propositional

1This decomposition can be seen as an ”algorithmic technique” [31].

17

F ::= A |F1 ∧ F2 |F1 ∨ F2 | ¬F
A ::= B1 ⊆ B2 |T1 ≤ T2 | |B| = T | |B| ≥ ℵ0 | |B| < ℵ0

B ::= x | ∅ | U |B1 ∪B2 |B1 ∩B2 |Bc

T ::= k |K |T1 + T2 |K · T
K ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

Figure 5: QFBAPAℵ0
’s syntax

combination of atoms A. An atom A is either the inclusion of two Boolean
expressions of sets B, an inequality of arithmetic expressions T , a statement
specifying the cardinality of a set B or specifying whether B is infinite or
finite. Set variables are represented by x and the universe of interpretation is
represented by U . Similarly, k denotes an integer variable and K an integer
constant. The remaining interpretations are standard.

Theorem 16. QFBAPAℵ0
is in NP.

Proof. Figure 6 gives a polynomial time verifier for QFBAPAℵ0
. By Lemma 8,

it suffices to prove the correctness of the procedure for disjuncts in the DNF
of the input formula. These will be of the form

φ ≡ F (b1, . . . , bk) ∧
n∧

i=1

Fin(ci) ∧
m∧
j=1

¬Fin(dj) (1)

where the bl, ci, dj are Boolean expressions.
⇒) If φ ∈ QFBAPAℵ0

then there exist sets of indices bl, ci, dj satisfying
(1). Each dj is infinite and thus, there exists at least one infinite elementary
Venn region βj contained in dj. Moreover, each βj may not be a part of a
Boolean expression b occurring in F as a purely arithmetic formula or under
the finiteness operator, it can only occur on atoms of the form |b| ≥ ℵ0 since
otherwise its cardinality should be finite. We will denote by C the set of all
such Boolean expressions.

In total, this gives a linear number of Venn regions β1, . . . , βN in the size
of the formula. These elementary Venn regions do not appear in F . So it
follows that they form a polynomial-sized certificate such that the following

18

formula is satisfiable

F (b1, . . . , bk) ∧
m∧
j=1

|pβj
| = 0 ∧

m∧
j=1

βj |= dj ∧
∧

l∈{l.bl∈C}

βj ⊭ bl (2)

⇐) If there is a polynomial-sized certificate such that formula 2 holds then
it follows that the cardinality of each βj can be changed without affecting
the truth of F (b1, . . . , bk). By hypothesis, βj is not in any ci so whathever
(finite) model was obtained for ci is preserved. Finally, we can change the
cardinality of βj to make the cardinality of dj infinite. With this change,
formula 1 holds too.

On input ⟨x,w⟩:

1. Interpret w as

(a) a list of elementary Venn regions β1, . . . , βN ∈ {0, 1}k where e
is the number of set variables in x.

(b) a certificate C for VQFBAPA on input

x′ = F (b1, . . . , bk)∧
m∧
j=1

|pβj
| = 0∧

m∧
j=1

βj |= dj ∧
∧

l∈{l.bl∈C}

βj ⊭ bl

2. Accept iff VQFBAPA accepts ⟨x′, C⟩.

Figure 6: Verifier for QFBAPAℵ0

5.2. Definition of Weak Power Structures
As in Definition 9, we fix a first-order language L, a non-empty set I and

a structure M with carrier M . In this context, we also fix a distinguished
element e ∈M .

Definition 17. The weak power structure Π∗ over I has domain

M I
∗ = {f : I →M | f(i) ̸= e for finitely many i ∈ I}

and interprets the symbols of L as follows. For each constant c and i ∈ I,
cΠ(i) = cM. For each function symbol f , i ∈ I, n ∈ N and a ∈ (M I)n,
fΠ(a)(i) = fM(a(i)). For each relation symbol R, n ∈ N and a ∈ (M I)n,
a ∈ RΠ if and only if for every i ∈ I, a(i) ∈ RM.

19

5.3. Complexity of the Existential Fragment of Weak Power Structures

Definition 18. We consider the satisfiability problem for QFBAPA formulas
F whose set variables are index sets defined by quantifier-free formulas φi of
L applied to either component theory constants or to components of the weak
power structure variables

∃c1, . . . , cm.∃x1, . . . , xn.

F (S1, . . . , Sk) ∧
k∧

i=1

Si = {r ∈ I | φi(x1(r), . . . , xn(r), c1, . . . , cm)}

We call this problem finite interpreted QFBAPA, which we write as QFBAPAFI.

Corollary 19. Th∃∗(M) ∈ NP if and only if QFBAPAFI ∈ NP.

Proof. It suffices to combine the verifier of Figure 6 with that of Figure 4.

Corollary 20. Th∃∗(Π∗) ∈ NP.

Proof. It suffices to write a formula of Th∃∗(Π∗) in the language of QFBAPAFI.
A positive literal R(t1, . . . , ta) is written as {i ∈ I |R(t1(i), . . . , ta(i))} = U . A
negative literal ¬R(t1(i), . . . , ta(i)) is written as |{i ∈ I | R(t1, . . . , tj)}| ≥ 1.
Finally, for each existential variable a from the power structure domain, one
needs to ensure that |{i ∈ I | a(i) ̸= e}| < ℵ0.

6. Power Structures with Order

This section describes the extension of QFBAPAI with an ordering rela-
tion. The ordering relation will be encoded with regular expressions with
large alphabets, defined in Section 6.1. Section 6.2 gives an NP decision pro-
cedure for the combination of regular expressions and QFBAPA. Section 6.3
shows that the resulting theory can be combined by set interpretation with
power structures.

6.1. Regular Expressions with Large Alphabets

Kleene introduced in [26] a theory of regular sets of tables to describe the
behaviour of McCulloch-Pitts nerve nets. In his interpretation, the columns
of these tables are indexed by the time unit and the rows by the neuron
in the described system. A particular entry is set to one if and only if the
corresponding neuron fires at the time indicated by its column index. Büchi

20

showed [11, 10] that under the interpretation that the rows correspond to
sets of natural numbers and the entries are interpreted as membership in
these sets, then the relations between the sets represented by the rows are
exactly those definable in weak monadic second-order theory of one successor
(WS1S).2 In particular, [11, Corollary 1] gives an alternative proof to [17,
Theorem 10.1] of the decidability of this theory.

Example 21. Consider the regular set of tables given by the expression((
1
0

)(
0
1

))∗

. One possible table satisfying this expression would be

Here A = {1, 3, 5, 7} and B = {2, 4, 6, 8}. In general, the corresponding
WS1S formula would specify the set of the first n odd natural numbers for A
and the set of the first n even natural numbers for B.

Note that a minor difference between the interpretation of Kleene and
that of Büchi is that the latter specifies an infinite table which is filled with
strings of zeros in all columns but in a finite subset.

We enrich the theory of the indices of power structures by considering
those relations definable in WS1S. In particular, we allow to express an order
between the components. To this end, we will further combine our algebra
of indices with the sets expressed in the formalism of Büchi, which we term
regular expressions over large alphabets. Figure 7 shows the syntax of such
expressions.

6.2. Combining QFBAPA and Regular Expressions using the Parikh Image

This section studies conditions under which we can combine the specifica-
tions of QFBAPA with regular expressions. We see that combining models of
each theory reduces to computing the Parikh image of the regular language
denoted by the regular expression.

2The observation of Büchi has been generalised. Some terminology uses the suffix ”on
words” to refer to this kind of interpretation of logical theories. It is also common to find
the expression ”MSOL on words” in this context since the proof of Büchi equating regular
languages with WS1S is also applicable to the formalism of monadic second-order logic.

21

R ::=

l1
l2
. . .
lK

 | R1R2 | R∗ | R1 ∪R2

Figure 7: Syntax of Regular Expressions over Large Alphabets

Definition 22. RegExp-QFBAPA is the theory consisting of conjunctions of
QFBAPA formulae F and regular expressions R.

Definition 23. A model of a RegExp-QFBAPA formula F ∧R consists of

• a cardinality for each Venn region.

• a regular table [26] t such that:

t ∈ JRK

for each letter l ∈ Σ, countt(l) = card(l)

where countt(l) denotes the number of times letter l appears in the table t.

The condition t ∈ JRK can be checked independently by a procedure
for the theory of regular sets of tables. On the other hand, the condition
countt(l) = card(l) depends also on the theory of sets and cardinalities. We
remove this dependence by computing for each table t ∈ JRK and each letter
l ∈ Σ, countt(l). We then collect for each table t the corresponding vector of
counts.

Definition 24 (Parikh Image).
The Parikh image of a regular expression with large alphabet R is the set

Parikh(R) = {(countt(l1), . . . , countt(l2K))|t ∈ JRK}

To compute the Parikh image of a regular expression R we use the fol-
lowing two well-known results

Lemma 25 ([12]).
Any regular expression can be converted into an NFA in Θ(|R|) time.

22

Lemma 26 ([36]).
Given an NFA A, the set Parikh(A) is definable by an existential Presburger
formula of size O(|A|).

Combining Lemma 25 and 26, we obtain an O(|R|) size existential Pres-
burger formula ψ(x) such that Parikh(R) = Parikh(A) = {x|ψ(x)}. A struc-
ture is a model of F ∧ R if and only if there exists t ∈ JRK and all Venn
regions corresponding to alphabet letters occurring in R have the cardinality
given by the Parikh image of t.

If F has variables S1, . . . , Sk then we defined the Venn region correspond-
ing to alphabet letter l as pl :=

⋂k
i=1 S

li
i . If l1, . . . , ls are the alphabet

letters occurring in R, then the above condition translates to the formula
(|pl1|, . . . , |pls|) ∈ Parikh(R). This is equivalent to ψ(|pl1|, . . . , |pls|). Conjoin-
ing this with F and applying the decision procedure for QFBAPA yields an
NP algorithm for RegExp-QFBAPA.

Theorem 27. RegExp-QFBAPA is in NP.

6.3. Combination with Power Structures

This section shows that the satisfiability problem of RegExp-QFBAPA
constraints conjoined with power structure constraints is solvable in NP.
The proof is similar to Theorem 15 but regular constraints allow to avoid the
use of sparse solutions of QFBAPA formulae.

Definition 28. Consider conjunctions of formulas F in QFBAPA, regular
expressions R over s letters with 1 ≤ s ≤ 2k and component structure speci-
fications φi with 1 ≤ i ≤ k, i.e. of the form

∃S1, . . . , Sk.F (S1, . . . , Sk)∧

∃t1, . . . , tk.

(
(t1, . . . , tk) ∈ R(l1, . . . , ls) ∧

k∧
i=1

Si = {n ∈ N|ti(n)}

)
∧

∃x1, . . . , xm.
k∧

i=1

Si = {n ∈ N|φi(x1(n), . . . , xm(n))}

where φi are formulae of a theory whose satisfiability problem is decidable in
NP. We call this theory RegExp-QFBAPA-Power.

23

The resulting constraints are schematically represented in Figure 8. Intu-
itively, the regular constraints impose an order on elementary Venn regions.
We represent this ordering as an automaton whose states are particular ele-
ments in the Venn region denoted by bold squares and whose transitions are
marked by arrows between states. Each dot in the diagram (circle or square)
represents an index in U . Theorem 29 shows that whenever the theory of the
formulae φi is decidable in NP, the specifications of Definition 28 are also de-
cidable in NP. Intuitively, this is because the procedure only needs to know
the value of the power structures elements xi on one index per elementary
Venn region (i.e. on the squares of Figure 8. The remaining positions of the
power structure element are filled by copying the value of these indices.

Figure 8: An example Venn region with regular constraints.

Theorem 29. If Th∃∗(M) ∈ NP then RegExp-QFBAPA-Power ∈ NP.

Proof. 1) Let VQFBAPAℵ0
be a polynomial time verifier for QFBAPAℵ0

and
let VC be a polynomial time verifier for the component theory. Figure 9
gives a verifier V for RegExp-QFBAPA-Power. We abbreviate (x1, . . . , xm)
by x and (t1, . . . , tk) by t. If Si are the set variables of the formula and

β ∈ {0, 1}k then we write pβ = ∩k
i=1S

β(i)
i , sβ = |pβ|, φβ(x) = ∧k

i=1φi(x)β(i)

and tβ(n) = ∧k
i=1ti(n)β(i). Finally, l0 denotes a bit-string of k zeros.

We show that x ∈ RegExp-QFBAPA-Power if and only if there exists a
polynomial-size certificate w such that V accepts ⟨x,w⟩.
⇒) If x ∈ RegExp-QFBAPA-Power then there exist s, t satisfying:

24

On input ⟨x,w⟩:

1. Interpret w as:

(a) a list of letters l1, . . . , lc ∈ {0, 1}k.
(b) a certificate C for VC on input y.
(c) a certificate C ′ for VQFBAPAℵ0

on input y′.

where y =
∧

l∈{l0,...,lc}
∃x.φl(x) and

y′ = ∃S1, . . . , Sk.F (S1, . . . , Sk) ∧ ψ(|pl1|, . . . , |pls |) ∧
∧

l∈{l0,...,lc}

pl ̸= ∅∧

∨
l∈{l0,...,lc}

pl = U ∧ sl0 = ℵ0 ∧
k∧

i=1

sli < ℵ0

2. Run VC on
〈
y, C

〉
and VQFBAPAℵ0

on
〈
y′, C ′

〉
. Accept iff both

runs accept.

Figure 9: Verifier for RegExp-QFBAPA-Power.

F (S1, . . . , Sk)∧

t ∈ R(l1, . . . , ls) ∧
k∧

i=1

Si = {n ∈ N|ti(n)}∧

k∧
i=1

Si = {n ∈ N|φi(s(n))}

Define Si := {n ∈ N|φi(s(n))} = {n ∈ N|ti(n)}. By Section 6.2, we know
that expression t ∈ R(l1, . . . , ls) is true if and only if ψ(|pl1|, . . . , |pls|) is
true. Applying the method of [29] to F (S1, . . . , Sk) ∧ ψ(|pl1|, . . . , |pls|) yields

a formula G ∧
p∧

i=0

2k−1∑
j=0

JbiKβj
· sβj

= ki. Removing those β where sβ = 0, we

find a set of indices R ⊆ {0, . . . , 2k − 1} where G ∧
p∧

i=0

∑
β∈R

JbiKβ · sβ = ki.

25

Note that l0 ∈ R always holds since we are using Büchi’s interpretation.
From pβ = {n ∈ N|φβ(s(n))} = {n ∈ N|tβ(n)}, follows that R ⊆ {l0, . . . , ls}
and l ∈ R implies that φβ(s(n)) is true in some index nl. If c + 1 = |R| =
O(|R|) then we write R = {l0, l1, . . . , lc}.

y is satisfiable since for each conjunct ∃x.φl(x) we have a witness s(nl).
y′ is satisfiable since sl ̸= 0 for each l ∈ R by hypothesis, sl0 = ℵ0 and∧k

i=1 sli < ℵ0 follows from Büchi’s interpretation of regular expressions and
ψ(|pl1 |, . . . , |pls|) is true since t ∈ R(l1, . . . , ls) holds by assumption.

The size of the formulas is linear in the size of the input. Thus, there
exist polynomial-size certificates C and C ′ such that VC and VQFBAPAℵ0

ac-
cept. Then, w = ⟨l0, . . . , lc, C, C ′⟩ is a polynomial-size certificate such that
V accepts ⟨x,w⟩.
⇐) If V accepts ⟨x,w⟩ in polynomial time then ⟨y, C⟩ is accepted by VC , so
for each l ∈ {l0, . . . , lc} there is a tuple xl such that φl(xl) holds, and ⟨y′, C ′⟩
is accepted by VQFBAPAℵ0

, so there exist sets Si making true the formula

F (S1, . . . , Sk) ∧ ψ(|pl1|, . . . , |pls|) ∧
∧

l∈{l0,...,lc}

pl ̸= ∅∧

∨
l∈{l0,...,lc}

pl = U ∧ sl0 = ℵ0 ∧
k∧

i=1

sli < ℵ0

We need to exhibit s, t satisfying

t ∈ R(l1, . . . , ls) ∧
k∧

i=1

Si = {n ∈ N|ti(n)} ∧
k∧

i=1

Si = {n ∈ N|φi(s(n))}

Define s(n) = xl if n ∈ pl. This is well-defined for every n ∈ N since
∨l∈{l0,...,lc}pl = U . Moreover, pl = {n ∈ N | φl(s(n))} by double inclusion
noting that φl ∧ φl′ is unsatisfiable for l ̸= l′. Thus Si = {n ∈ N|φi(s(n))}
since

Si =
⋃

l∈{l0,...,lc},li=1

pl =
⋃

l∈{l0,...,lc},li=1

{n ∈ N|φl(s(n))} = {n ∈ N|φi(s(n))}

By hypothesis ψ(|pl1 |, . . . , |pls|) is true. Therefore there exists t ∈ R(l1, . . . , ls)
such that sli = |{n ∈ N|tli(n)}| for i = 1, . . . , c, sl0 = ℵ0 and sβ = 0 for
β ∈ {0, 1}k \ {l0, . . . , lc}, thus

26

Si =
⋃

l∈{l0,...,lc},li=1

pl =
⋃

l∈{l0,...,lc},li=1

{n ∈ N|tl(n)} = {n ∈ N|ti(n)}

7. Closure Properties

With the aim of studying the feasibility of integrating the developed speci-
fication languages with formal systems such as SMT solvers and Hoare logic,
this section studies closure properties under propositional and imperative
commands operations of the following extension of RegExp-QFBAPA-Power

Definition 30. The formulae of the power fragment are of the form

∃k′, t′, x′.F (S, k, k
′
) ∧ (t, t

′
) ∈ R(l1, . . . , ls)

∧
∧
i

Si = {n ∈ N | ψi(t(n), t
′
(n))}

∧
∧
j

Sj = {n ∈ N | φj(x(n), x′(n), c)}

where the formulae ψi are propositional and the formulae φj are from a NP-
decidable fragment.

7.1. Closure under Propositional Operations

Closure under propositional operations means that if we are given formu-
lae F, F1, F2 in our fragment then F1∧F2, F1∨F2 and ¬F can also be written
in our fragment (for details see [6]).

We will need the following two well-known facts about NFAs

• Every NFA has an equivalent regular expression. [47, Section 3.3]

• Regular languages are closed under complement. [47, Theorem 4.1]

Proposition 31. The formulae of the power fragment are closed under con-
junction and disjunction. The formulae of obtained from the power fragment
by removing existential quantifiers are also closed under negation.

27

Proof. 1) For conjunction, we assume that we are given two formulae

φ1 = ∃k′1, t
′
1, x

′
1.F1(S1, k1, k

′
1) ∧ (t1, t

′
1) ∈ R(l11, . . . , ls1)∧∧

i1

Si1 = {n ∈ N | ψi1(t1(n), t
′
1(n))}∧∧

j1

Sj1 = {n ∈ N | φj1(x1(n), x′1(n), c1)}

φ2 = ∃k′2, t
′
2, x

′
2.F2(S2, k2, k

′
2) ∧ (t2, t

′
2) ∈ R(l12, . . . , lt2)∧∧

i2

Si2 = {n ∈ N | ψi2(t2(n), t
′
2(n))}∧∧

j2

Sj2 = {n ∈ N | φj2(x2(n), x′2(n), c2)}

then their conjunction is

φ1 ∧ φ2 = ∃k′1, t
′
1, x

′
1.∃k

′
2, t

′
2, x

′
2.

F1(S1, k1, k
′
1) ∧ (t1, t

′
1) ∈ R(l11, . . . , ls1)∧

F2(S2, k2, k
′
2) ∧ (t2, t

′
2) ∈ R(l12, . . . , lt2)∧∧

i1

Si1 = {n ∈ N | ψi1(t1(n), t
′
1(n))}∧∧

j1

Sj1 = {n ∈ N | φj1(x1(n), x′1(n), c1)}∧
i2

Si2 = {n ∈ N | ψi2(t2(n), t
′
2(n))}∧∧

j2

Sj2 = {n ∈ N | φj2(x2(n), x′2(n), c2)}

Since QFBAPA is closed under propositional operations and the conjunc-
tion of set interpretations is a set interpretation, it remains to analyse closure
of a conjunction of regular expressions of the form

(t1, t
′
1) ∈ R(l11, . . . , ls1) ∧ (t2, t

′
2) ∈ R(l12, . . . , lt2)

In other words, we are looking for a third regular expression R3 over letters
that are the concatenation of one letter of R(l11, . . . , ls1) and one letter of
R(l12, . . . , lt2), i.e. of the form li1 · lj2, such that

(t1, t
′
1, t2, t

′
2) ∈ R3

28

We show the the existence of such regular expression by converting to NFA’s.
By Lemma 25, there exist automata A1 = (Q1,Σ1, δ1, q01, F1) and A2 =
(Q2,Σ2, δ2, q02, F2) accepting the languages R1 and R2 respectively. Let A3 =
(Q3,Σ3, δ3, q03, F3) be an automaton such that

• Q3 = Q1 ×Q2, Σ3 = Σ1 × Σ2, q03 = (q01, q02), F3 = F1 × F2

• δ3((q1, q2), (a1, a2)) =

(δ1(q1, a1), δ2(q2, a2))

(q1, δ2(q2, a2)) if q1 ∈ F1 and a1 = 0

(δ1(q1, a1), q2) if q2 ∈ F2 and a2 = 0

where we can assume that the final states have no outgoing transitions but
those labelled by the input letter 0 and leading to a common final state
with a single loop labelled with 0. This is done to account for Büchi’s in-
terpretation of regular expressions (Section 6.1). With this modification, the
language accepted by A3 is that represented by R3. This completes the case
of conjunctions.

2) For disjunction, we assume that we are given two formulae

φ1 = ∃k′1, t
′
1, x

′
1.F1(S1, k1, k

′
1) ∧ (t1, t

′
1) ∈ R(l11, . . . , ls1)∧∧

i1

Si1 = {n ∈ N | ψi1(t1(n), t
′
1(n))}∧∧

j1

Sj1 = {n ∈ N | φj1(x1(n), x′1(n), c1)}

φ2 = ∃k′2, t
′
2, x

′
2.F2(S2, k2, k

′
2) ∧ (t2, t

′
2) ∈ R(l12, . . . , lt2)∧∧

i2

Si2 = {n ∈ N | ψi2(t2(n), t
′
2(n))}∧∧

j2

Sj2 = {n ∈ N | φj2(x2(n), x′2(n), c2)}

29

then their disjunction is

φ1 ∨ φ2 = ∃k′1, t
′
1, x

′
1.∃k

′
2, t

′
2, x

′
2.

(F1(S1, k1, k
′
1) ∧ (t1, t

′
1) ∈ R(l11, . . . , ls1)∧∧

i1

Si1 = {n ∈ N | ψi1(t1(n), t
′
1(n))}∧∧

j1

Sj1 = {n ∈ N | φj1(x1(n), x′1(n), c1)})∨

(F2(S2, k2, k
′
2) ∧ (t2, t

′
2) ∈ R(l12, . . . , lt2)∧∧

i2

Si2 = {n ∈ N | ψi2(t2(n), t
′
2(n))}∧∧

j2

Sj2 = {n ∈ N | φj2(x2(n), x′2(n), c2)})

We claim that φ is equisatisfiable to

φ′ = ∃k′1, t
′
1, x

′
1.∃k

′
2, t

′
2, x

′
2.

(F1(S1, k1, k
′
1) ∨ F2(S2, k2, k

′
2)) ∧ (t1, t

′
1, t2, t

′
2) ∈ R3∧∧

i1

Si1 = {n ∈ N | ψi1(t1(n), t
′
1(n))}∧∧

j1

Sj1 = {n ∈ N | φj1(x1(n), x′1(n), c1)})∧∧
i2

Si2 = {n ∈ N | ψi2(t2(n), t
′
2(n))}∧∧

j2

Sj2 = {n ∈ N | φj2(x2(n), x′2(n), c2)}

where R3 is the regular expression formula built in part 1).
If M |= φ1 ∨ φ2 then M |= φi for some i ∈ {1, 2}. Without loss in

generality, let us assume that i = 1. We redefine the table variables (tj2, t
′
j2)

in such a way that R3 is satisfied. This can be done because the regular
expressions of Figure 7 are always satisfiable (i.e. there is no regular expres-
sion representing the empty set of tables). Call the new model M′. Then
M′ |= φ′ since Si2 and Sj2 do not introduce variables occurring in F1.

30

Conversely, if M |= φ′ then

M |= ∃k′1, t
′
1, x

′
1.∃k

′
2, t

′
2, x

′
2.

Fi(Si, ki, k
′
i) ∧ (t1, t

′
1, t2, t

′
2) ∈ R3∧∧

i1

Si1 = {n ∈ N | ψi1(t1(n), t
′
1(n))}∧∧

j1

Sj1 = {n ∈ N | φj1(x1(n), x′1(n), c1)}∨∧
i2

Si2 = {n ∈ N | ψi2(t2(n), t
′
2(n))}∧∧

j2

Sj2 = {n ∈ N | φj2(x2(n), x′2(n), c2)})

for some i ∈ {1, 2}. From this, it follows that M |= φ1 ∨ φ2.
This concludes the case of disjunctions.
3) For negation, we assume that we are given a formula of the power

fragment without existential quantifiers, i.e. of the form

F (S, k) ∧ t ∈ R(l1, . . . , ls)

∧
∧
i

Si = {n ∈ N | ψi(t(n))}

∧
∧
j

Sj = {n ∈ N | φj(x(n), c)}

Negating it, we obtain a disjunction of three terms

¬F (S, k) ∨ t ∈ R(l1, . . . , ls)∨

¬
(∧

i

Si = {n ∈ N | ψi(t(n))} ∧
∧
j

Sj = {n ∈ N | φj(x(n), c)}
)

We know there exists a regular expression Rc for the complement of R and
thus we obtain an equivalent formula3

¬F (S, k) ∨ t ∈ Rc(l1, . . . , ls)∨

¬
(∧

i

Si = {n ∈ N | ψi(t(n))} ∧
∧
j

Sj = {n ∈ N | φj(x(n), c)}
)

3In general, it may be computationally difficult to compute the complement of a regular
expression. Alternatively, one could ask the user of the verification system to provide a
deterministic finite automata instead.

31

t ∈ Rc(l1, . . . , ls) is equivalent to the condition
(
|pl1|, . . . , |pls|

)
∈ Parikh(Rc).

Thus we have

¬F (S, k) ∨
(
|pl1|, . . . , |pls|

)
∈ Parikh(Rc)∨

¬
(∧

i

Si = {n ∈ N | ψi(t(n))} ∧
∧
j

Sj = {n ∈ N | φj(x(n), c)}
)

Finally, we introduce variables Di, D
′
i(

¬F ∨ (|pl1 |, . . . , |plp |) ∈ Parikh(Rc) ∨
∨

Si ̸= Di ∨
∨

S ′
i ̸= D′

i

)
∧

∧
∧

Di = {n ∈ N | ψi(t(n))} ∧
∧

D′
i = {n ∈ N | φj(x(n), c)}

The resulting formula is a conjunction of a QFBAPA formula and an
interpreted formula, which is also in the fragment.

7.2. Closure under an Imperative Commands Language

In this section, we introduce a simple imperative programming language
that can be used as a target to translate programs with annotations but with-
out loops nor procedure calls into formulae of our logical fragment. We show
that the relations induced by the commands of this programming language
on the states of the program are definable by formulas of the fragment.

The imperative programming language is shown in Figure 10. The com-
mand Assume allows to specify conditions that need to hold at the given
point in the program. The expression a[i] := v updates the array pointed
by a at position i with value v. The expression i += 1 updates the value of
integer variable i by one.4 P1;P2 denotes the sequential composition of P1

and P2. P1□P2 executes either P1 or P2 non-deterministically.

P ::=Assume(φ) | a[i] := e | i += 1 | e = a[i] | P1;P2 | P1□P2

Figure 10: Simple loop-free programming language.

4The proof in this section still holds in the case of having an arbitrary quantifier-free
Presburger arithmetic formula on the right-hand side.

32

Proposition 32. Let the state of our programs be represented as a tuple
(i, v, a) where i is a tuple of integer variables, e is a tuple of element variables
and a is a tuple of power structure variables. We denote by (i, e, a) the input

of the program and by (i
′
, e′, a′) its output. Then we show that the relations

R(c) between input and output variables induced by the commands c of the
programming language of Figure 10 can be written as

R(c) = {(i, e, a, i
′
, e′, a′)|ψ(i, e, a, i

′
, e′, a′)}

where ψ is a formula of the power fragment.

Proof. We prove it by structural induction on the shape of the formula.

• Closure under Assume statement.

The formula associated with Assume(φ) is

R(Assume(φ)) =

{
(i, e, a, i

′
, e′, a′)

∣∣∣∣∣φ ∧
∧
v∈V

v′ = v

}

that is, φ holds and all variables remain unchanged after execution of
the statement.

Since the fragment is closed under conjunctions, we only need to check
that v′ = v is in the fragment for each kind of variable.

For variables e of the element theory this can be encoded as

S ̸= ∅ ∧ S = {i ∈ I | e = e′}

For variables i of the index theory this can be encoded as

i = i′

For variables a of the power structure theory this can be encoded as

S = I ∧ S = {i ∈ I | a(i) = a′(i)}

• Closure under memory write statement.

33

The formula associated with a[j] = e is

R(a[j] = e) =

(i, e, a, i
′
, e′, a′)

∣∣∣∣∣∣∣
{i ∈ I; a(i) = a′(i)} = I \ {j′}∧
{i ∈ I | a(i) = e} ⊇ {j′}∧
j′ = j ∧ e′ = e

encoded in our fragment the right-hand side reads

∃t1, . . . , t3.j′ = j ∧ e′ = e ∧ S1 = I \ S4 ∧ S2 ⊇ S4∧
|S1| = j ∧ |S1 ∩ S2 ∩ S3| = 1 ∧ |S1 ∩ S3| = 1∧
t1 ∈ 1∗ ∧ t2 ∈ 0∗1 ∧ t3 ∈ 0∗11

S1 = {i ∈ I | a(i) = a′(i)} ∧ S2 = {i ∈ I | a(i) = e}∧
S3 = {n ∈ N | t1(n)} ∧ S4 = {n ∈ N | t2(n)}∧
S5 = {n ∈ N | t3(n)}

where S4 is the singleton set {j′} due to the conditions imposed. For
a visual explanation, see Figure 11.

• Closure under index increment.

The formula associated with i = i+ 1 is

R(i = i+ 1) =
{

(i, e, a, i
′
, e′, a′)

∣∣∣ i′ = i+ 1
}

• Closure under memory read.

The formula associated with e = a[j] is

R(e = a[j]) =
{

(i, e, a, i
′
, e′, a′)

∣∣∣ {j} ⊆ {i ∈ I | a(i) = e′} ∧ j = j′ ∧ a = a′
}

Encoded in our fragment the right-hand side reads

∃t1, . . . , t3.j′ = j ∧ S1 = I ∧ S2 ⊇ S4∧
|S1| = j ∧ |S1 ∩ S2 ∩ S3| = 1 ∧ |S1 ∩ S3| = 1∧
t1 ∈ 1∗ ∧ t2 ∈ 0∗1 ∧ t3 ∈ 0∗11

S1 = {i ∈ I | a(i) = a′(i)} ∧ S2 = {i ∈ I | a(i) = e′}∧
S3 = {n ∈ N | t1(n)} ∧ S4 = {n ∈ N | t2(n)}∧
S5 = {n ∈ N | t3(n)}

34

• Closure under sequential composition.

The formula associated with P1;P2 is

R(P1;P2) = {(x, x′)|∃x′′.F (P1)[x
′ := x′′] ∧ F (P2)[x := x′′]}

i.e. first P1is executed and its output is renamed to an intermediate
value x′′ and then P2 is executed and its input value is renamed to x′′.
Note that we have abbreviated the tuple (i, e, a) to x and (i

′
, e′, a′) to

x′′. To prove this is again a formula in the fragment we will first rename
the occurrences of x′′ in each conjunct by adding new set variables

– for each element variable in x′′, x, we create two constant element
variables c1, c2 and impose S = {i ∈ I | c1 = c2}∧S = I. Then we
replace x by c1 in the first substitution and by c2 in the second
substitution.

– for each index variable in x′′, i, we create two index variables
i1, i2 and impose i1 = i2. Then we replace x by i1 in the first
substitution and by i2 in the second substitution.

– for each power variable in x′′, a, we create two power variables
a1, a2 and impose S = {i ∈ I | a1(i) = a2(i)} ∧ S = I. Then we
replace a by a1 in the first substitution and by a2 in the second
substitution.

This allows to rewrite the formula ∃x′′.F (P1)[x
′ := x′′]∧F (P2)[x := x′′]

as
∃x′′1, x′′2.F (P1)[x

′ := x′′1] ∧ F (P2)[x := x′′2] ∧ φ

where φ is a QFBAPA formula mentioning only variables in x′′1, x
′′
2.

By induction hypothesis, F (P1)[x
′ := x′′1] and F (P2)[x := x′′2] are

formulae of the fragment. By the closure properties, F (P1)[x
′ :=

x′′1] ∧ F (P2)[x := x′′2] is in the fragment too. Let us call this formula
ψ so that the resulting formula is ∃x′′1, x′′2.ψ ∧ φ. Now, ψ and φ share
free variables but it is straightforward that their conjunction is again a
formula of the fragment since φ only adds terms to the QFBAPA part
and to the set interpretations.

35

Thus, we can rewrite ∃x′′1, x′′2.ψ ∧ φ into

∃k′′1, t
′′
1, a

′′
1, k

′′
2, t

′′
2, a

′′
2.∃k

′
, t

′
, a′.

F (S, k, k
′
) ∧ (t, t

′
) ∈ R(l1, . . . , ls)

∧
∧
i

Si = {n ∈ N | ψi(t(n), t
′
(n))}

∧
∧
j

Sj = {n ∈ N | φj(a(n), a′(n), c)}

which is again in the fragment.

• Closure under non-deterministic composition.

The formula associated with P1□P2 is

R(P1□P2) = {(i, e, a, i
′
, e′, a′)|F (P1) ∨ F (P2)}

where F (P) is the formula associated to program P . Since the fragment
is closed under disjunction, the resulting formula is in the fragment too.

0 . . . 0 1
0 . . . 0 1
0 . . . 0 1 1

j’

S3

S4

S5

Figure 11: Table configuration imposed by the formula corresponding to a memory write.

7.3. Closure under Hoare Logic Triples

Given a Hoare triple {P}c{Q}, where P,Q are formulae of the power
fragment without existential quantifiers and c is a command of the simple
loop-free programming language of Figure 10, we know that its semantics
corresponds to the formula (P ∧Fc) =⇒ Q where Fc is the formula derived
in the previous section for command c. Equivalently, we need to check validity
of ¬(P ∧Fc)∨Q. This is the same as checking unsatisfiability of P ∧Fc∧¬Q.
Since we assume that Q is in the power fragment without quantifiers, ¬Q is
again a formula in the fragment by Proposition 31. Since the power fragment
is closed under conjunction, it follows that {P}c{Q} can be written in it.

36

8. Classification of Array Theories

[41] studied first a theory of arrays with an extensionality axiom.
[15] extended this by adding pointwise functions and relations to the

supported language. [15] showed how to encode sets and multisets in the
language of CAL but noted that cardinalities of those could not be expressed.
In [35], we showed that CAL constraints can be encoded in QFBAPAI with
a log-quadratic increase in the formula size. Thus QFBAPAI can be used to
encode CAL constraints as well as cardinalities over sets and multisets.

[1] studied a fragment of the theory of arrays that supported cardinalities
of interpreted sets, which they called simple flat subfragment. A similar
language was studied in [21]. These works were driven by applications in
verification of distributed systems. This may be the reason why the logic
used in the interpreted sets is Presburger arithmetic. Our logic QFBAPAI
admits any NP-decidable theory instead. None of these works seem to have
recognized the connection with [15].

The model-theoretic approach to array theories that we propose, had
the virtue of suggesting the further generalisation of including an ordering
relation in the index set since this is done for instance in [17]. Inspired by
the result of [14], we formulated the fragment RegExp-QFBAPA-Power which
still has the advantage of being independent of the component theory.

RegExp-QFBAPA-Power

QFBAPAI

Combinatory Array Logic Flat Array Subfragment

Extensional Theory of Arrays #Π-logic

Figure 12: Treated theories of arrays sorted by expressivity.

37

9. Conclusion

We have obtained results on the computational complexity of several
logical theories that are relevant in software verification. In order to do so,
we used a basic insight on the decomposition of the theory of power structures
in terms of the index theory and the theory of the elements, as well as the
combination of theories through sets and cardinalities.

Our approach allows to make definability arguments so that it is clear
what can be expressed with the proposed specifications. For instance, in
RegExp-QFBAPA-Power, the definable relations on the indices of the power
structure are precisely those definable in weak monadic second-order arith-
metic of one successor. It also provides means for classifying existing syntac-
tic theories. As shown in Figure 10, QFBAPAI subsumes at least four existing
theories in the literature.

There are two interesting directions of future work. First, it would be
interesting to investigate the trade-offs between the expressivity offered by
RegExp-QFBAPA-Power and its perfomance in practice. This could have an
impact on SMT solvers such as Z3 or CVC which implement the CAL sub-
fragment of RegExp-QFBAPA-Power. Experimental work could be combined
with theoretical analysis as the one suggested in [39]. Second, the semantic
methodology of this paper could be applied to other array theories such as
the classical [8]. It would be also interesting to apply the semantic method-
ology to other domains in software verification. This has been advocated by
some of the leading experts in the field [33, Lecture 19].

Declaration of competing interest
The authors declare that they have no known competing financial inter-

ests or personal relationships that could have appeared to influence the work
reported in this paper.
Data availability

No data was used for the research described in the article.

References

[1] F. Alberti, S. Ghilardi, and E. Pagani. Cardinality constraints for ar-
rays (decidability results and applications). Formal Methods in System
Design, 51(3):545–574, December 2017.

[2] Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Booster:
An Acceleration-Based Verification Framework for Array Programs. In

38

Franck Cassez and Jean-François Raskin, editors, Automated Technology
for Verification and Analysis, Lecture Notes in Computer Science, pages
18–23, Cham, 2014. Springer International Publishing.

[3] Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Decision
Procedures for Flat Array Properties. Journal of Automated Reasoning,
54(4):327–352, April 2015.

[4] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, Cambridge ; New York, 2009.

[5] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A Versa-
tile and Industrial-Strength SMT Solver. In Dana Fisman and Grigore
Rosu, editors, Tools and Algorithms for the Construction and Analysis
of Systems, Lecture Notes in Computer Science, pages 415–442, Cham,
2022. Springer International Publishing.

[6] J. Barwise and S. Feferman, editors. Model-Theoretic Logics. Perspec-
tives in Logic. Cambridge University Press, Cambridge, 2017.

[7] Aaron Bradley and Zohar Manna. Calculus of computation: decision
procedures with applications to verification. Springer, Berlin, 2007.
OCLC: ocn190764844.

[8] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s Decid-
able About Arrays? In E. Allen Emerson and Kedar S. Namjoshi, edi-
tors, Verification, Model Checking, and Abstract Interpretation, Lecture
Notes in Computer Science, pages 427–442, Berlin, Heidelberg, 2006.
Springer.

[9] Stanley N. Burris. Logic for Mathematics and Computer Science. Pren-
tice Hall, Upper Saddle River, N.J, 1st edition edition, August 1997.

[10] J. R. Büchi and D. Siefkes. Decidable Theories: Vol. 2: The Monadic
Second Order Theory of All Countable Ordinals. Springer, Berlin, 1973.

[11] J. Richard Büchi. Weak Second-Order Arithmetic and Finite Automata.
Mathematical Logic Quarterly, 6(1-6):66–92, 1960.

39

[12] Chang Chia-Hsiang and Robert Paige. From regular expressions
to DFA’s using compressed NFA’s. Theoretical Computer Science,
178(1):1–36, May 1997.

[13] Maximiliano Cristiá and Gianfranco Rossi. Integrating Cardinality Con-
straints into Constraint Logic Programming with Sets. Theory and
Practice of Logic Programming, pages 1–33, November 2021. Publisher:
Cambridge University Press.

[14] Przemys law Daca, Thomas A. Henzinger, and Andrey Kupriyanov. Ar-
ray Folds Logic. In Swarat Chaudhuri and Azadeh Farzan, editors,
Computer Aided Verification, Lecture Notes in Computer Science, pages
230–248, Cham, 2016. Springer International Publishing.

[15] Leonardo de Moura and Nikolaj Bjorner. Generalized, efficient array de-
cision procedures. In 2009 Formal Methods in Computer-Aided Design,
pages 45–52, Austin, TX, November 2009. IEEE.

[16] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
volume 4963, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. Series Title: Lecture Notes in Computer Science.

[17] S. Feferman and R. Vaught. The first order properties of products of
algebraic systems. Fundamenta Mathematicae, 47(1):57–103, 1959.

[18] Jeanne Ferrante and Charles Rackoff. The Computational Complexity
of Logical Theories. Springer Berlin, Heidelberg, 1979.

[19] Robert W. Floyd. Assigning Meanings to Programs. In Timothy R.
Colburn, James H. Fetzer, and Terry L. Rankin, editors, Program Veri-
fication: Fundamental Issues in Computer Science, Studies in Cognitive
Systems, pages 65–81. Springer Netherlands, Dordrecht, 1993.

[20] Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, and Daniele Zucchelli.
Decision procedures for extensions of the theory of arrays. Annals of
Mathematics and Artificial Intelligence, 50(3):231–254, August 2007.

[21] Klaus v. Gleissenthall, Nikolaj Bjørner, and Andrey Rybalchenko. Car-
dinalities and universal quantifiers for verifying parameterized systems.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming

40

Language Design and Implementation, PLDI ’16, pages 599–613, New
York, NY, USA, June 2016. Association for Computing Machinery.

[22] Peter Habermehl, Radu Iosif, and Tomáš Vojnar. What Else Is Decid-
able about Integer Arrays? In Foundations of Software Science and
Computational Structures, Lecture Notes in Computer Science, pages
474–489, Berlin, Heidelberg, 2008. Springer.

[23] Wilfrid Hodges. Model Theory. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge, 1993.

[24] Gérard Huet. Initiation à la Logique Mathématique, 1986.

[25] James Cornelius King. A program verifier. PhD thesis, Carnegie-Mellon
University, Pittsburgh Pennsylvania USA, September 1969. Section:
Technical Reports.

[26] S. C. Kleene. Representation of Events in Nerve Nets and Finite Au-
tomata. In Representation of Events in Nerve Nets and Finite Automata,
pages 3–42. Princeton University Press, 1956.

[27] Daniel Kroening and Ofer Strichman. Decision Procedures. Texts in
Theoretical Computer Science. An EATCS Series. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2 edition, 2016.

[28] Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. Deciding Boolean
Algebra with Presburger Arithmetic. Journal of Automated Reasoning,
36(3):213–239, April 2006.

[29] Viktor Kuncak and Martin Rinard. Towards Efficient Satisfiability
Checking for Boolean Algebra with Presburger Arithmetic. In Frank
Pfenning, editor, Automated Deduction – CADE-21, Lecture Notes in
Computer Science, pages 215–230, Berlin, Heidelberg, 2007. Springer.

[30] Rustan Leino. Dafny: An Automatic Program Verifier for Functional
Correctness. In Logic for Programming, Artificial Intelligence, and Rea-
soning, pages 348–370, April 2010.

[31] J. A. Makowsky. Algorithmic uses of the Feferman–Vaught Theorem.
Annals of Pure and Applied Logic, 126(1):159–213, April 2004.

41

[32] J. McCarthy. Towards a Mathematical Science of Computation. In
Timothy R. Colburn, James H. Fetzer, and Terry L. Rankin, editors,
Program Verification: Fundamental Issues in Computer Science, Studies
in Cognitive Systems, pages 35–56. Springer Netherlands, Dordrecht,
1993.

[33] José Meseguer. Lecture Notes on Topics in Automated Reasoning. 2017.

[34] Andrzej Mostowski. On direct products of theories. The Journal of Sym-
bolic Logic, 17(1):1–31, March 1952. Publisher: Cambridge University
Press.

[35] Rodrigo Raya, Jad Hamza, and Viktor Kunčak. NP Decision Proce-
dure for Monomial and Linear Integer Constraints. Technical Report
arXiv:2208.02713, arXiv, October 2022. arXiv:2208.02713 [cs] type: ar-
ticle.

[36] Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Haber-
mehl. Counting in Trees for Free. In Josep Dı́az, Juhani Karhumäki,
Arto Lepistö, and Donald Sannella, editors, Automata, Languages and
Programming, Lecture Notes in Computer Science, pages 1136–1149,
Berlin, Heidelberg, 2004. Springer.

[37] Joseph Shoenfield. Mathematical logic. Addison-Wesley Publishing
Company, Inc., 1967.

[38] Michael Sipser. Introduction to the Theory of Computation. Cengage
Learning, 3 edition, June 2012.

[39] R. E. Stearns and H.B. Hunt III. On the Complexity of the Satisfiability
Problem and the Structure of NP. Technical Report 86-21, State Uni-
versity of New York at Albany, Computer Science Department, October
1986.

[40] Larry Stockmeyer and Albert R. Meyer. Cosmological lower bound on
the circuit complexity of a small problem in logic. Journal of the ACM,
49(6):753–784, November 2002.

[41] A. Stump, C.W. Barrett, D.L. Dill, and J. Levitt. A decision procedure
for an extensional theory of arrays. In Proceedings 16th Annual IEEE

42

Symposium on Logic in Computer Science, pages 29–37, Boston, MA,
USA, 2001. IEEE Comput. Soc.

[42] Nikhil Swamy, Juan Chen, and Ben Livshits. Verifying Higher-order
Programs with the Dijkstra Monad. In Programming Language Design
and Implementation, June 2013.

[43] A.M. Turing. Checking a large routine. In Report of a Conference on
High Speed Automatic Calculating Machines, pages 67–69. Univ. Math.
Lab., Cambridge, 1949.

[44] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Si-
mon Peyton-Jones. Refinement types for Haskell. In Proceedings of the
19th ACM SIGPLAN international conference on Functional program-
ming, ICFP ’14, pages 269–282, New York, NY, USA, August 2014.
Association for Computing Machinery.

[45] Nicolas Charles Yves Voirol. Verified Functional Programming. PhD
thesis, EPFL, Lausanne, 2019.

[46] Thomas Wies, Ruzica Piskac, and Viktor Kuncak. Combining Theories
with Shared Set Operations. In Silvio Ghilardi and Roberto Sebastiani,
editors, Frontiers of Combining Systems, Lecture Notes in Computer
Science, pages 366–382, Berlin, Heidelberg, 2009. Springer.

[47] Sheng Yu. Regular Languages. Handbook of Formal Languages: Volume
1 Word, Language, Grammar, pages 41–110, 1997.

43

