Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Protein Dielectrophoresis with Gradient Array of Conductive Electrodes Sheds New Light on Empirical Theory
 
research article

Protein Dielectrophoresis with Gradient Array of Conductive Electrodes Sheds New Light on Empirical Theory

Zavatski, Siarhei  
•
Bandarenka, Hanna
•
Martin, Olivier J. F.  
January 24, 2023
Analytical Chemistry

Dielectrophoresis (DEP) is a versatile tool for the precise microscale manipulation of a broad range of substances. To unleash the full potential of DEP for the manipulation of complex molecular-sized particulates such as proteins requires the development of appropriate theoretical models and their comprehensive experimental verification. Here, we construct an original DEP platform and test the Holzel-Pethig empirical model for protein DEP. Three different proteins are studied: lysozyme, BSA, and lactoferrin. Their molecular Clausius-Mossotti function is obtained by detecting their trapping event via the measurement of the fluorescence intensity to identify the minimum electric field gradient required to overcome dispersive forces. We observe a significant discrepancy with published theoretical data and, after a very careful analysis to rule out experimental errors, conclude that more sophisticated theoretical models are required for the response of molecular entities in DEP fields. The developed experimental platform, which includes arrays of sawtooth metal electrode pairs with varying gaps and produces variations of the electric field gradient, provides a versatile tool that can broaden the utilization of DEP for molecular entities.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Proteins dielectrophoresis with gradient array of conductive.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.91 MB

Format

Adobe PDF

Checksum (MD5)

a6fbdbf965f8f99ea4e237d50018e9c2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés