Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Analysis-aware defeaturing of complex geometries
 
preprint

Analysis-aware defeaturing of complex geometries

Antolin Sanchez, Pablo  
•
Chanon, Ondine  
December 6, 2022

Local modifications of a computational domain are often performed in order to simplify the meshing process and to reduce computational costs and memory requirements. However, removing geometrical features of a domain often introduces a non-negligible error in the solution of a differential problem in which it is defined. In this paper, we aim at generalizing the work from [1], in which an a posteriori estimator of the geometrical defeaturing error is derived for domains from which one geometrical feature is removed. More precisely, we study the case of domains containing an arbitrary number of distinct features, and we perform an analysis on Poisson's, linear elasticity, and Stokes' equations. We introduce a simple and computationally cheap a posteriori estimator of the geometrical defeaturing error, whose reliability and efficiency are rigorously proved, and we introduce a geometric refinement strategy that accounts for the defeaturing error: Starting from a fully defeatured geometry, the algorithm determines at each iteration step which features need to be added to the geometrical model to reduce the defeaturing error. These important features are then added to the (partially) defeatured geometrical model at the next iteration, until the solution attains a prescribed accuracy. A wide range of numerical experiments are finally reported to illustrate and validate this work.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2212.03141.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

copyright

Size

14.62 MB

Format

Adobe PDF

Checksum (MD5)

fbed141efe00f8e14cae81890221e610

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés