Files

Abstract

In TCV, unstable modes excited by resonant interaction between the shear Alfvèn waves in con- tinuum gaps and energetic particles have been observed in scenarios with Neutral Beam Injection (NBI). TCV is a middle-size device (R 0 /a = 0.88/0.25) equipped with a 1 MW, 25 keV tangential neutral beam injector. In this paper the phenomenology of modes excited with on-axis NBI is presented. The Alfvènic nature of the modes has been confirmed investigating their sensitivity against plasma parameters such as NBI energy, toroidal magnetic field, and cross-checking with the predictions from linear kinetic stability code. The mode radial profile is estimated using Electron Cyclotron Emission mea- surement and agrees well with modelling results. In addition, the fast particle distribution function has been modeled using TRANSP/NUBEAM code. Even with counter-current NBI (leading to higher losses), the drive from the resonant particles is sufficient for the mode excitation. An ad-hoc additional diffusion model allows to estimate the fast particle transport, modifying the fast particle gradient at the mode location and matching the neutron rates.

Details

Actions

Preview