Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. On Semi-Algebraic Proofs and Algorithms
 
conference paper

On Semi-Algebraic Proofs and Algorithms

Fleming, Noah
•
Göös, Mika  
•
Grosser, Stefan
Show more
2022
[Proceedings of ITCS 2022]
13th Innovations in Theoretical Computer Science (ITCS)

We give a new characterization of the Sherali-Adams proof system, showing that there is a degree-d Sherali-Adams refutation of an unsatisfiable CNF formula C if and only if there is an ε > 0 and a degree-d conical junta J such that viol_C(x) - ε = J, where viol_C(x) counts the number of falsified clauses of C on an input x. Using this result we show that the linear separation complexity, a complexity measure recently studied by Hrubeš (and independently by de Oliveira Oliveira and Pudlák under the name of weak monotone linear programming gates), monotone feasibly interpolates Sherali-Adams proofs. We then investigate separation results for viol_C(x) - ε. In particular, we give a family of unsatisfiable CNF formulas C which have polynomial-size and small-width resolution proofs, but for which any representation of viol_C(x) - 1 by a conical junta requires degree Ω(n); this resolves an open question of Filmus, Mahajan, Sood, and Vinyals. Since Sherali-Adams can simulate resolution, this separates the non-negative degree of viol_C(x) - 1 and viol_C(x) - ε for arbitrarily small ε > 0. Finally, by applying lifting theorems, we translate this lower bound into new separation results between extension complexity and monotone circuit complexity. LIPIcs, Vol. 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), pages 69:1-69:25

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

LIPIcs-ITCS-2022-69.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

887.8 KB

Format

Adobe PDF

Checksum (MD5)

1df5358da7ba2248d495e47940a38422

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés