Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Hubbard U through polaronic defect states
 
research article

Hubbard U through polaronic defect states

Falletta, Stefano  
•
Pasquarello, Alfredo  
December 31, 2022
Npj Computational Materials

Since the preliminary work of Anisimov and co-workers, the Hubbard corrected DFT+U functional has been used for predicting properties of correlated materials by applying on-site effective Coulomb interactions to specific orbitals. However, the determination of the Hubbard U parameter has remained under intense discussion despite the multitude of approaches proposed. Here, we define a selection criterion based on the use of polaronic defect states for the enforcement of the piecewise linearity of the total energy upon electron occupation. A good agreement with results from piecewise linear hybrid functionals is found for the electronic and structural properties of polarons, including the formation energies. The values of U determined in this way are found to give a robust description of the polaron energetics upon variation of the considered state. In particular, we also address a polaron hopping pathway, finding that the determined value of U leads to accurate energetics without requiring a configurational-dependent U. It is emphasized that the selection of U should be based on physical properties directly associated with the orbitals to which U is applied, rather than on more global properties such as band gaps and band widths. For comparison, we also determine U through a well-established linear-response scheme finding noticeably different values of U and consequently different formation energies. Possible origins of these discrepancies are discussed. As case studies, we consider the self-trapped electron in BiVO4, the self-trapped hole in MgO, the Li-trapped hole in MgO, and the Al-trapped hole in alpha-SiO2.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41524-022-00958-6.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.29 MB

Format

Adobe PDF

Checksum (MD5)

101dd2ac14b8046febe769c0e7c68f24

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés