Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Kernel Memory Networks: A Unifying Framework for Memory Modeling
 
conference paper

Kernel Memory Networks: A Unifying Framework for Memory Modeling

Iatropoulos, Georgios  
•
Brea, Johanni Michael  
•
Gerstner, Wulfram  
Koyejo, S.
•
Mohamed, S.
Show more
2022
Advances in Neural Information Processing Systems 35
The Thirty-Sixth Annual Conference on Neural Information Processing Systems

We consider the problem of training a neural network to store a set of patterns with maximal noise robustness. A solution, in terms of optimal weights and state update rules, is derived by training each individual neuron to perform either kernel classification or interpolation with a minimum weight norm. By applying this method to feed-forward and recurrent networks, we derive optimal models, termed kernel memory networks, that include, as special cases, many of the hetero- and auto-associative memory models that have been proposed over the past years, such as modern Hopfield networks and Kanerva's sparse distributed memory. We modify Kanerva's model and demonstrate a simple way to design a kernel memory network that can store an exponential number of continuous-valued patterns with a finite basin of attraction. The framework of kernel memory networks offers a simple and intuitive way to understand the storage capacity of previous memory models, and allows for new biological interpretations in terms of dendritic non-linearities and synaptic cross-talk. 24 pages, 5 figures. Camera-ready version for NeurIPS 2022

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2208.09416v3.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

924.65 KB

Format

Adobe PDF

Checksum (MD5)

273e5597ac174447466825961e0e4c40

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés