Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Insights into the interaction of a shale with CO2
 
research article

Insights into the interaction of a shale with CO2

Stavropoulou, Eleni  
•
Laloui, Lyesse  
December 5, 2022
Solid Earth EGUsphere

Caprock formations, such as shales, play a key role in safe underground CO2 storage since they serve as a hydromechanical barrier that prevents migration of the injected CO2 to the surface. While their hydromechanical response is important to ensure their sealing capacity, interaction with the injected CO2 involves additional thermo–hydro–chemo–mechanical (THCM) phenomena that may threaten the long-term integrity of the caprock. The low-transport properties of shales make them a suitable caprock material, but at the same time challenging to study due to the very long timescales (months/years) that are required for the various THCM processes to manifest. In this work, the long-term multiphysical interaction of the Opalinus Clay shale with liquid and supercritical CO2 is studied in 3D with live X-ray tomography. Three-dimensional analysis reveals the localised response of the coupled THCM processes that is often indistinguishable with conventional lab testing protocols. To improve spatial and temporal resolution while applying field-representative pressure and temperature conditions, small-sized samples are studied. Long-term injection of liquid CO2 resulted in significant fissuring of calcite-rich zones that were for the first time visualised and quantified from the X-ray images. Additionally, a re-arrangement of the pre-existing micro-fissures in the clay matrix was observed. The volumetric response during direct exposure of an Opalinus Clay sample to supercritical CO2 revealed an initial swelling at pre-fissured zones and initiation of new micro-fissures at areas of direct contact with the anhydrous CO2 due to pore water evaporation. Advanced 3D image analysis showed an increasing CO2 uptake in the caprock material with time, suggesting potential CO2 trapping in the material.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

se-13-1823-2022.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

12.67 MB

Format

Adobe PDF

Checksum (MD5)

8902145cdca47240a2dbda252a42196b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés