Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Noise-Resistant Mixed-Discrete Particle Swarm Optimization Algorithm for the Automatic Design of Robotic Controllers
 
conference paper

A Noise-Resistant Mixed-Discrete Particle Swarm Optimization Algorithm for the Automatic Design of Robotic Controllers

Baumann, Cyrill
•
Martinoli, Alcherio
2022
2022 IEEE Congress on Evolutionary Computation
IEEE Congress on Evolutionary Computation (CEC)

The automatic design of well-performing robotic controllers is still an unsolved problem due to the inherently large parameter space and noisy, often hard-to-define performance metrics, especially when sequential tasks need to be accomplished. Distal control architectures, which combine precoded basic behaviors into a (probabilistic) finite state machine offer a promising solution to this problem. In this paper, we enhance a Mixed-Discrete Particle Swarm Optimization (MDPSO) algorithm with an Optimal Computing Budget Allocation (OCBA) scheme to automatically synthesize distal control architectures. We benchmark MDPSO-OCBA’s performance against the original MDPSO as well as the Iterated F-Race (IRACE) and the Mesh Adaptive Direct Search (MADS) algorithms on both a benchmark function with different noise levels and design problems of distal control architectures. More specifically, we evaluate the algorithms using high-fidelity simulations in three increasingly challenging scenarios involving parallel and sequential tasks. Additionally, the best performing controller generated in simulation by each optimization algorithm is compared with a manually designed solution and validated with physical experiments. The analysis on the benchmark function with different noise levels demonstrates MDPSO-OCBA’s high robustness to noise. The comparison on the robotic control design problems shows that, without any meta-parameter tuning, MDPSO-OCBA is able to generate the best performing control architectures overall, closely followed by IRACE. They significantly outperform MADS for the more complex and noisier scenarios, resulting in competitive controllers in comparison to the manually designed one.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CEC22_camera-ready.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

3.01 MB

Format

Adobe PDF

Checksum (MD5)

d508cab11133fd80ab91dc546b1ef137

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés