Abstract

We revisit the fate of the skin modes in many-body non-Hermitian fermionic systems. Contrary to the single-particle case, the many-body ground state cannot exhibit an exponential localization of all eigenstates due to the Pauli exclusion principle. However, asymmetry can still exist in the density profile, which can be quantified using the imbalance between the two halves of the system. Using the non-Hermitian Su-Schrieffer-Heeger (SSH) chain as an illustration, we show the existence of two distinct scaling regimes for the imbalance. In the first one, the imbalance grows linearly with the system size, as generically expected. In the second one, the imbalance saturates to a finite value. By combining high-precision exact diagonalization calculations and analytical arguments, we observe that the imbalance does not scale when the occupied bands can be deformed to their Hermitian limit. This suggests a direct connection between the corresponding bulk topological invariants and the skin effect in many-body systems. Importantly, this relation also holds for interacting systems.

Details

Actions