Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Learning socio-organizational network structure in buildings with ambient sensing data
 
research article

Learning socio-organizational network structure in buildings with ambient sensing data

Sonta, Andrew  orcid-logo
•
Jain, Rishee K.
2020
Data-Centric Engineering

We develop a model that successfully learns social and organizational human network structure using ambient sensing data from distributed plug load energy sensors in commercial buildings. A key goal for the design and operation of commercial buildings is to support the success of organizations within them. In modern workspaces, a particularly important goal is collaboration, which relies on physical interactions among individuals. Learning the true socio-organizational relational ties among workers can therefore help managers of buildings and organizations make decisions that improve collaboration. In this paper, we introduce the Interaction Model, a method for inferring human network structure that leverages data from distributed plug load energy sensors. In a case study, we benchmark our method against network data obtained through a survey and compare its performance to other data-driven tools. We find that unlike previous methods, our method infers a network that is correlated with the survey network to a statistically significant degree (graph correlation of 0.46, significant at the 0.01 confidence level). We additionally find that our method requires only 10 weeks of sensing data, enabling dynamic network measurement. Learning human network structure through data-driven means can enable the design and operation of spaces that encourage, rather than inhibit, the success of organizations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

learning_network_structure.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-SA

Size

1.5 MB

Format

Adobe PDF

Checksum (MD5)

5a1964fbe65590aa0e0ef5e894262247

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés