Abstract

Monomeric Fe species in zeolites are considered to be the active sites for the low temperature activity toward ammonia-assisted selective catalytic reduction of nitrogen oxides (NH3-SCR) in exhaust gases. Herein, we report on a preparation method to synthesize single-site Fe/ZSM-5 by combination of dealumination with the use of a bulky iron complex to introduce Fe. Transient in situ XAS experiments at the Fe K-edge under dynamic NH3-SCR reaction conditions demonstrated the involvement of all iron atoms in the redox cycle and, with that, suggest that Fe species in the studied Fe/ZSM-5 catalyst are monomers. Simulation of experimental X-ray absorption data revealed that the Fe species in the sample obtained by this approach adopt a square planar geometry, which changes into fivefold coordination at low temperature by strongly binding either NO or NH3 as the ligand. The presence of monomeric Fe species in this Fe/ZSM-5 conveys molecular level insights into the temperature-dependent NH3-SCR activity and might prove useful in the study of other reactions over monomeric Fe species, such as methane partial oxidation or dehydroaromatization reactions.

Details