Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Frequency-domain data-driven position-dependent controller synthesis for Cartesian Robots
 
research article

Frequency-domain data-driven position-dependent controller synthesis for Cartesian Robots

Schuchert, Philippe Louis  
•
Karimi, Alireza  
2023
IEEE Transactions on Control Systems Technology

Cartesian robots have position-dependent dynamics that should be accounted for in high performance applications. Traditional methods design Linear Time Invariant (LTI) controllers which are robustly stable with respect to position variations, but require a trade-off in performance to account for the changing dynamics. Advanced methods require Linear Parameter Varying (LPV) models and LPV controller design methods that are not well established in industry. On the other hand, classical model-based gain-scheduled technique requires paramet- ric identification, design of high performance controllers for each position, interpolation of the controller parameters and real-time validation of the gain-scheduled controller, which takes costly engineering time. We propose a new approach, using the frequency response of a system at different operating points, to design a Linear Parameter Varying (LPV) controller. The controller parameters are optimised by a convex optimisation algorithm based on second-order cone programming. The approach is applied to an industrial 3-axis Cartesian robot, showing significant improvements over state-of-the-art control design strategies. Data acquisition and controller design can be performed automatically, reducing significantly the engineering costs for controller synthesis

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TCST_LPV.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

6.22 MB

Format

Adobe PDF

Checksum (MD5)

ed021359c419ee8745edf2180936e056

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés