Abstract

The properties of 2D materials are unparalleled when compared to their 3D counterparts; many of these properties are a consequence of their size reduction to only a couple of atomic layers. Metallic, semiconducting, and insulating types can be found and form a platform for a new generation of devices. Among the possible methods to utilize 2D materials, functional printing has emerged as a strong contender because inks can be directly formulated from dispersions obtained by liquid-phase exfoliation. Printed graphene-based devices are shifting from laboratory applications toward real-world and mass-producible systems going hand in hand with a good understanding of suitable exfoliation methods for the targeted type of ink. Such a clear picture does not yet exist for hexagonal boron nitride (h-BN), the transition metal dichalcogenides (TMDs), and black phosphorous (BP). Rather, reports of applications of these 2D materials in printed devices are scattered throughout the literature, not yet adding to a comprehensive and full understanding of the relevant parameters. This perspective starts with a summary of the most important features of inks from exfoliated graphene. For h-BN, the TMDs, and BP, the characteristic properties when exfoliated from solution and strategies to formulate inks are summarized.

Details