Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Seasonal hysteresis of surface urban heat islands
 
research article

Seasonal hysteresis of surface urban heat islands

Manoli, Gabriele  
•
Fatichi, Simone
•
Bou-Zeid, Elie
Show more
March 31, 2020
Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS)

Temporal dynamics of urban warming have been extensively studied at the diurnal scale, but the impact of background climate on the observed seasonality of surface urban heat islands (SUHIs) remains largely unexplored. On seasonal time scales, the intensity of urban–rural surface temperature differences (ΔTs) exhibits distinctive hysteretic cycles whose shape and looping direction vary across climatic zones. These observations highlight possible delays underlying the dynamics of the coupled urban–biosphere system. However, a general argument explaining the observed hysteretic patterns remains elusive. A coarse-grained model of SUHI coupled with a stochastic soil water balance is developed to demonstrate that the time lags between radiation forcing, air temperature, and rainfall generate a rate-dependent hysteresis, explaining the observed seasonal variations of ΔTs. If solar radiation is in phase with water availability, summer conditions cause strong SUHI intensities due to high rural evaporative cooling. Conversely, cities in seasonally dry regions where evapotranspiration is out of phase with radiation show a summertime oasis effect controlled by background climate and vegetation properties. These seasonal patterns of warming and cooling have significant implications for heat mitigation strategies as urban green spaces can reduce ΔTs during summertime, while potentially negative effects of albedo management during winter are mitigated by the seasonality of solar radiation.

  • Details
  • Metrics
Type
research article
DOI
10.1073/pnas.1917554117
Author(s)
Manoli, Gabriele  
Fatichi, Simone
Bou-Zeid, Elie
Katul, Gabriel G.
Date Issued

2020-03-31

Published in
Proceedings Of The National Academy Of Sciences Of The United States Of America (PNAS)
Volume

117

Issue

13

Start page

7082

End page

7089

Editorial or Peer reviewed

NON-REVIEWED

Written at

OTHER

EPFL units
URBES  
Available on Infoscience
October 5, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/191203
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés