
Bio-inspired Reflex System for Learning Visual Information for Resilient
Robotic Manipulation

Kai Junge∗1, Kevin Qiu∗1, Josie Hughes1

Abstract— Humans have an incredible sense of self-preservation
that is both instilled, and also learned through experience. One
system which contributes to this is the pain and reflex system
which both minimizes damage through involuntary reflex ac-
tions and also serves as a means of ‘negative reinforcement’
to allow learning of poor actions or decision. Equipping robots
with a reflex system and parallel learning architecture could
help to prolong their useful life and allow for continued learning
of safe actions. Focusing on a specific mock-up scenario of cubes
on a ‘stove’ like setup, we investigate the hardware and learning
approaches for a robotic manipulator to learn the presence of
‘hot’ objects and its contextual relationship to the environment.
By creating a reflex arc using analog electronics that bypasses
the ‘brain’ of the system we show an increase in the speed
of release by at least two-fold. In parallel we have a learning
procedure which combines visual information of the scene with
this ‘pain signal’ to learn and predict when an object may
be hot, utilizing an object detection neural network. Finally,
we are able to extract the learned contextual information of
the environment by introducing a method inspired by ‘thought
experiments’ to generate heatmaps that indicate the probability
of the environment being hot.

I. INTRODUCTION

For robots to be ubiquitous and operate in complex and
potentially dangerous human environments, one challenge
that must be addressed is their life-span and resilience.
Unlike humans who can live for prolonged periods of time,
it is challenging to develop robots that can ‘survive’ for
even a fraction of that amount [1]. This may be due to
hardware degradation, but also resulting from poor actions or
decisions made by a robot that lead to damage [2]. To address
this concern, we must find both hardware and learning
based solutions by which robots can choose to make actions
or decisions which are not self-harming throughout their
lifespan [3]. One biological example of self-preservation is
pain detection and the corresponding reflex arc. Animals
detect pain through specific receptors (nocireceptors) which
initiate a reflex action, an involuntary withdrawal reflex.
This decision bypasses the brain and is performed by the
spinal cord allowing for a rapid and unconscious withdrawal.
In addition to reducing damage, this pain signal is also
motivational for both short term and long term harm-avoiding
behaviors [4]. The concept of pain and the way by which
the brain uses this information to inform future behavior is
still being investigated by neuroscientists [5], however it is
clear that this signal contributions to learning. A number
of architectures have been proposed to explain the learning

∗These authors contributed equally to this work 1CREATE Lab, EPFL,
Lausanne, Switzerland. Contact emails: kai.junge, longlai.qiu,
josie.hughes, @epfl.ch.

Fig. 1. a) Biological interaction to an external signal from the world
and their robotic counterparts (in brackets). b) Overview of the learning
approach where visual information about hot objects is learned to allow for
prediction of hot objects and generation of heatmaps.

process, including reinforcement learning [6]. In addition to
equipping robots with improved self-preservation, develop-
ing robots with nocireceptors, reflexes and learning could
allow different hypothesis to be validated.
The implementation of bio-inspired reflex actions has been
demonstrated previously in a number of robotic systems. In
the 1980s, an artificial reflex arc was implemented for a
knee structure [7]. More recent approaches have shown a
decentralized spinal reflex which is achieved using purely
mechanical devices for a brainless walking robot [8], and
utilizing of reflexes for the control of a quadruped [9]. Lever-
aging exciting advances in sensor and material technologies,
a decentralized robotic sensory stem has been demonstrated
that uses self heal-able neuromorphic memtransistor ele-
ments to both detect and heal after damage [10]. Reflex-
like systems have also been shown for a number of appli-
cations including collision avoidance [11], human assistive
systems [12], and safe human-robot interaction [13]. These
existing technological advances and applications demonstrate
the potential for a physical reflex response. The next open
challenge is how we bring the brain into the loop. How can
we have this reflex system running in parallel to a ‘brain’
like system, which learns from visual information to make
decision or actions which minimize the likelihood of pain?
Many learning processes inherently rely on ‘negative reward’
signals, and are thus well formulated for integration with

‘pain-like’ negative reinforcement signals [14]. However,
from this feedback the robot must learn to understand how
the environment led to the negative reinforcement signal to
minimize future ‘painful’ actions. Thus, the goal of this
work is to develop a combined body-brain approach to
enable a robotic manipulator to minimize damage when
interacting with hot objects. This is achieved by using both
an involuntary reflex action and also the continued learning
of objects’ and the environment’s thermal properties from
visual information.
Starting from biological inspiration we implement a reflex-
inspired system using analog electronics such that the re-
sponse is entirely involuntary and overrides any decisions
from the ‘brain’ or microcontroller. This detected ‘pain’ is
also used to train a neural network to learn a mapping from
visual information from the object and surrounding area, to
obtain the probability of objects to be hot. We focus on
the specific scenario of a stove top with hot plates, where
the goal of the robot is to clean or remove objects from
it safely. A learning pipeline (Fig. 1b) has been developed
that seeks to identify the probability of an object being hot
given contextual environmental information (e.g. hot plate,
and on/off indicator) by iteratively training a neural network
classifier. Using this trained neural network we can then
augment scene images with ‘virtual’ objects and estimate
the probability of the virtual object being hot. By running
many of these ‘thought-experiments’ across the space of the
image, we can build up a heatmap that reflects the probability
of a hot environment across the entire scene.
In the remainder of this paper we introduce the analog
electronics and hardware used to achieve this reflex action
and demonstrate the potential for a rapid action which by-
passes any computation. Using this detection of pain, we
show the results for an exploration and learning approach
which allows prediction of hot objects and a resulting choice
of object. We conclude with a discussion of this approach
and further steps to generalize the approach.

II. PROBLEM STATEMENT

The specific scenario we focus on is that of a cooking
stove. We create a stove setup that have ‘visual clues’ that
represent a typical stove structure - round heating elements
and also neighboring lights (stove indicators) that indicate
if these specific heating elements are hot. On the stove we
place objects: blocks with green markers for easy visual
identification. When these are on top of the hotplates, they
are set to be physically hot (Arbitrarily set to > 30◦C which
is consistently hotter than the ambient temperature). The
overall goal is create a robot that removes as many objects as
possible, ‘cleaning’ the stove of objects, whilst minimizing
damage to the manipulator by picking as few hot objects as
possible. Furthermore, we want to be able to generalize our
understanding of the environment such that we learn which
areas of the scene are hot and cold such that for an unseen
object type we can determine which of these objects the robot
should not touch.

III. REFLEX INSPIRED HARDWARE & CONTROL
We propose a hardware and control architecture where the
temperature sensor signal used as the nocireceptor output is
passed to the brain (microcontroller) but can also trigger an
analog electronics reflex system in parallel. On detecting high
temperatures the output from this analog reflex can override
the manipulator motor commands from the microcontroller.
This reflex override triggers a high ‘over-drive’ voltage for a
split second to quickly release objects. This occurs involun-
tarily without any decision from the ‘brain’. In this section
we detail the analog electronics and then the mechanical
design of the manipulator.

A. Analog Reflex System

The analog reflex and microcontroller (Arduino Nano) are
both connected to the thermistor which is used as the sensory
receptor, and to the motor which actuates the gripper. When
a temperature threshold is exceeded this triggers the analog
reflex action which must override the motor control signal
from the microcontroller to enable a higher voltage to be
applied to the DC motors allowing for quick release. This
requires analog electronics which can rapidly trigger the
generation of a signal to switch transistor drive circuits in
turn drive the motor.
The full implementation of this circuit is summarized in
Fig. 2. The output from the thermistor potential divider is
connected to a comparator with a reference voltage set by
a potentiometer. When the thermistor voltage exceeds this
reference voltage the comparator is triggered and generates
a falling edge. This falling edge is connected to a monostable
vibrator circuit formed from a 555 timer which latches
the output signal Q and enables the motor control to be
overridden until the latch is reset. The inverse of the output
from the monostable (Q̄) is produced using an FET-based
not gate. These two signals (Q, Q̄) are used to override the
motor command signals initiating from the microcontroller.
The DC motor controlling the gripper is driven by an H-
bridge circuit through two voltage signals Vout,1 and Vout,2.
In normal operation, the H-bridge is controlled via digital
and pwm signals from the microcontroller, Vout,1 = Vcmd,1

and Vout,2 = Vcmd,2. When the reflex circuit is triggered, the
two signals (Q, Q̄) will override the microcontroller signals
such that Vout,1 = Vcc and Vout,2 = GND to enable the
maximum voltage from the power supply to be applied to the
DC motor. Once the reflex action has released the object, the
microcontroller then resets the monostable to regain normal
operation.
The circuit has a number of limitations in its performance.
For example, with a faster microcontroller, the reaction speed
can be increased to match that of the analog circuit, achiving
a higher reaction time purely by the ‘brain’. Furthermore,
with the current circuit, the reaction speed is limited by the
thermistor response, and the threshold temperature is fixed.
While these limitations can be improved, we emphasize that
this circuit demonstrates the fundamental characteristics of
a robotic counterpart for the human reflex action: a sensory-
motor control which bypasses and temporarily blocks signals

Fig. 2. a) The high level diagram of how the reflex circuit interacts with the
‘body’ (robot hand) and the ‘brain’ (microcontroller). b) The circuit diagram
of the reflex circuit with sections of different functionality highlighted. c)
Representation of how the signal propagates from measured temperature
increase to the motor command.

for the brain enabling a resultant motion which has higher
energy than normal operation.

B. Manipulator Design & Capabilities

A two finger parallel gripper has been designed for the grasp-
ing experiments (Fig. 3). The gripper uses a rack and pinion
mechanism to convert a rotary motion to parallel motion.
The motor (typically rated for 12V) can be overdriven at
30V for a short period of time which causes a much faster
motion which imitates the rapid reflex response motion. The
thermistor is mounted one on the surface of one of the
gripper fingers. The gripper has the electronics mounted
above (reflex circuit, driver electronics, microcontroller) and
can be mounted on a robot arm (UR3 arm).
To illustrate the speed of response of this ‘reflex action’
in comparison to the action which is made when passing
through the ‘brain’, we show the comparison of the release
action for these two approaches in Fig. 4. When triggered
and utilizing the robots ‘reflex arc’ the speed of response is
approximately twice that of the computational method.

IV. LEARNING METHODS

In this section we outline the methods used to learn potential
causes of pain at both the object and environment level. To
achieve this, we use an object detection network to identify
objects that are hot. This problem is challenging for two

Fig. 3. The parallel finger gripper with thermistor on the finger with the
electronics mounted about the mechanism.

Fig. 4. Speed comparison showing the release of a block when activated
via the brain or via the reflex action. The green and maroon lines indicate
the position of the gripper fingers respectively.

reasons. Firstly, the generation of training data comes from
the robot exploring the environment. As a result, ground truth
labels are only obtained when the robot encounters a painful
stimulus such as that when in contact with a hot object.
Additionally, such information can only be gained for a small
part of the scene. Secondly and resulting from this, the robot
must rapidly learn from a limited dataset to minimize the
number of painful experiences.
To learn both an object and environmental level understand-
ing of hot areas we introduce two methods: an iterative
learning method inspired by reinforcement learning, and a
‘thought-experiment’ like method to extract the robot’s belief
of the environment status using the trained neural network.

A. Iterative Learning Process

We present an iterative learning process using Ultralytics’
YOLOv5 [15] architecture to identify hot objects in the
scene and probability of them being hot. We first present
the overview iterative process before detailing the specific
training of YOLOv5.
The iterative learning process, described through Algorithm
1, is inspired by Q-learning [16]. A action-reward matrix
Q =

[qpick,hot qpick,cold
q ¯pick,hot q ¯pick,cold

]
is first initialized with null values

which store the immediate reward and penalty values based
on the stimulus that the robot comes into contact with (N.B.:
q ¯pick,hot, q ¯pick,cold will never be updated since the robot
needs to come in contact with the objects to obtain rewards).
The values of the true rewards are set to rpick,hot = −2 and

rpick,cold = 1. The action-reward matrix is applied per object
when calculating optimal action.
When presented with a new stove configuration, we first
capture an image I and detect the necessary objects and its
grasping points. This is done by segmenting the HSV color
space of the image and detecting the green box contours
of the objects. Note at this point, the objects are detected,
but the robot has not yet inferred the belief of each objects’
temperature state.
The probability of the object being hot p = P (hot) is then
obtained by applying the YOLOv5 neural network to image
I . The output is a list of bounding boxes and its classification
confidence. If an object is not classified with a bounding box,
we let p = 0. Initially before the neural network is trained,
every object is assumed to have p = 0.
By matching the location of the bounding boxes and the
object location detected using the green rectangles, we obtain
a list of all objects and their P (hot) values.
The action space is defined per object and is a = 0 or a = 1
corresponding to the robot not picking or picking the box
respectively. To compute the optimal action, we compute
the predicted reward for the actions given for this stove
configuration by (1).

Rpred(a,p,Q) =
∑
i

r(ai, pi,Q)

r(a, p,Q) =

{
pqpick,hot + (1− p)qpick,cold, a = 1

0, a = 0

(1)

The optimal action for each object detected is found by
maximizing the reward as in (2).

a∗ = argmax
a

Rpred(a,p,Q) (2)

The true action applied to object i is determined through the
epsilon-greedy algorithm where the action ai is chosen to be
either the optimal action a∗i or a random action.

ai =

{
a∗i , Probability: 1− ϵ

Random action, Probability: ϵ
(3)

The value of ϵ is calculated by (4), where n is the number
of training iterations and γ is a parameter set to 0.3.

ϵ = exp(−γn) (4)

When an action for each object is chosen, the robot will
execute the action while obtaining ground truth labels of each
object that it interacted with. After the robot executes all its
actions for a stove configuration, and if it has encountered
a hot object, it will train YOLOv5 upon its existing network
weights before moving on to a new stove configuration.
To train the neural network, we begin using the YOLOv5s
pre-trained model with the default hyperparameters and
initialize the batch size and epochs to be 10 and 100 respec-
tively. After each training iteration, the highest performing
weights are stored to be used both for testing and as the
initial set of weights for the subsequent training iteration.

TABLE I
DATA AUGMENTATION PARAMETERS

Transformation Amount Probability

Rotate 7◦ 0.7
RandomScale 0.05 0.5

Flip - 0.9

We use an expanding dataset, where the full dataset is used
for training the network at every iteration. For every stove
configuration, if one or more hot object was encountered, we
use the image of that stove and the corresponding labels and
bounding boxes for training. We enlarge the bounding boxes
on the detected green rectangle using a constant scaling
factor of 1.4 in order to gather some amount of contextual
information from the box’s background. To increase the
amount of training data, we apply data augmentation to
generate 14 images per each observed scene. Specifically,
we apply a series of transformations as listed in Table I.
The probability associated with each transformation is the
likelihood of the transformation occurring on said image. For
each augmented set, we randomly split between the train and
validation images under a 10:4 ratio.

B. Environmental Generalization: ‘Thought Experiments’

We introduce a ‘thought experiment’ as part of the robot’s
ability to accumulate knowledge and apply its learning
to different environmental settings. The neural network is
trained to detect box-like objects that fall on hot areas.
Although the direct output from this network will only
provide temperature information in the presence of blocks,
the network has learned some information regarding visual
features of hot areas of the environment around the object.
An additional step is required to extract this information from
the network to enable a ‘heatmap’ of the robot’s belief of the
probability of an area being hot over a given image of the
scene to be generated.
For a particular image, provided the learning was successful,
the neural network will predict whether the objects used
for training is hot or not based on where it is placed.
Since the test objects are all practically identical, we can
conclude the network has learned some visual relationship
between object’s temperature and the environment it has
been placed on. Equally, the test objects can be considered
to be points in space where the robot samples whether the
environment is hot or not. To leverage this fact, we can place
synthetic objects to the captured image in various locations,
to conduct a ‘thought experiment’: “if we place an object in a
particular location, then would the object be hot?”. As shown
in Fig. 5, a series of images with synthetic objects placed
in various locations can be generated. For each image, the
neural network returns bounding boxes and confidence (or
the lack of). This information can be gathered into a matrix
collating p at each point in space, resulting in a heatmap
shown on the right hand side of Fig. 5.
To implement this method we extract a single image cutout
of the object from one scene which can be used to augment

Algorithm 1 Iterative learning process
1: Initialize n← 0 ▷ n: iteration count
2: Initialize Q← empty ▷ Q: immediate reward table
3: Initialize D ← empty ▷ D: dataset for training
4: Initialize w← YOLOv5s ▷ w: NN weights
5: Initialize γ ▷ γ: decay rate
6: I ← camera image
7: Initialize lhot ← empty ▷ lhot: hot labels
8: Detect objects and their grasping points in I
9: Obtain pi for every object i. p = [p0, p1, ..] using
YOLOv5

10: Determine a∗ ▷ See (2)
11: ϵ = exp(−γn)
12: for object in I do
13: Determine ai using equation 3
14: if ai = pick then
15: Robot picks up block
16: li ← ground truth label obtained from robot
17: if li = hot then
18: Robot releases the block due to reflex action
19: qpick,hot ← rpick,hot
20: Append li to lhot
21: else
22: Remove block from workspace
23: qpick,cold ← rpick,cold
24: end if
25: end if
26: end for
27: if lhot is not empty then
28: Apply data augmentation on I using lhot
29: Append augmented data to D
30: Train NN on D using w
31: w← w from 30 ▷ update weights from training
32: n← n+ 1 ▷ increment iteration count
33: end if
34: Move on to new stove and object configuration
35: go to 6 ▷ restart process by taking a new image

other scenes. This cutout can be overlaid at any x,y co-
ordinate and a new image generated. We create a series of
225 augmented images per scene to generate a heat map
which are spaced in a grid like manner (15x15) over the
image. From this a heat map can be generated. The higher
the number of augmented images the greater the resolution
of the generated heatmap, but the longer the computational
time. After generating the augmented images and running
the trained neural network across each one, we can average
the probability for each grid across the scene to generate the
heat map. Finally Gaussian smoothing is then used to obtain
a smoother more continuous representation of the heatmap.

V. EXPERIMENTAL SETUP

The specific scenario we focus on is that of a cooking stove.
We create a stove that has ‘visual clues’ that represent a
typical stove structure - round heating elements and also
neighboring lights (stove indicators) that indicate if these

Fig. 5. Illustration of the ‘thought-experiment’ concept, showing how an
evaluation of synthetic test points across a scene is used to build up a
heatmap.

Fig. 6. Experiment setup showing the custom manipulator, UR3 robot arm
and the stove setup. A red stove indicator means the stove is ON, and thus
any object on it is hot.

specific heating elements are turned on (a red indicator means
the stove is on). We create this representative setup within
the workspace of a robot UR3 arm on which the manipulator
equipped with the reflex circuit is mounted. The objects we
consider are blocks with square green markers on top to
facilitate object detection. To simulate these blocks conduct-
ing the heat from the stove, each have Peltier elements on
the side which are connected to batteries within. This setup
allows us to rapidly create different stove configurations by
placing the round hot plate areas, the indicators, and objects
in any possible configuration.
Above the simulated stove, a webcam is placed to capture
the scene. The recorded image of the stove is used for
training/inference using the neural network, and to obtain
grasping points of the blocks automatically. A simple cal-
ibration system utilizing April Tags at the corners of the
workspace of the robot has been used to allow robot co-
ordinates to be converted to real world co-ordinates.
The manipulator is controlled via serial communication from
an external computer which runs the learning and action
selection algorithms.

VI. RESULTS
A. Iterative Learning

To test the iterative learning process we perform an ex-
periment where the exploration and learning algorithm is

Fig. 7. Result of the iterative learning process, summarized by a time series evolution of the training iteration, exploration parameter ϵ, error in predicted
reward, and confidence of detected objects. A sample of 5 prediction images returned from the neural network and their corresponding stove configurations
are shown.

Fig. 8. Minimum training and validation loss during each iteration for
bounding box localization and object classification.

applied to a growing number of stove configurations. Fig. 7
summarizes the results for this iterative learning process
which involved 30 different stove setups. Time series a)
shows when the network is retrained, and time series b)
shows the evolution of ϵ and the shift from exploration
to exploitation. To assess the performance of the decisions
made by the robot, time series c) plots the magnitude of
the error of the predicted reward and the maximum reward
obtainable in a particular stove configuration given by R.
The orange curve shows the error based on the action that
produces the optimal predicted reward |R−Rpred(a

∗,p,Q)|
(i.e. without the addition of any exploration caused by ϵ).
Whereas, the blue curve is the error based on the applied
action |R − Rpred(a,p,Q)|, which may divert from the
optimal due to random exploration. This metric shows both
the convergence of the neural network’s prediction quality
and the exploration performed to divert from the optimal
predicted action. For both curves, we see the error reaches
zero towards the end of the stove configurations. In fact, for
the latter half of the iteration experiments, 14 out of 15 stove
configurations have been perfectly assessed.

Another analysis of the performance of the iterative training
is the confidence of predictions, shown by time series d) for
both true and false positives. Here, we define true positives
as the network correctly labelling a hot object and the false
positives as the network labelling a cold object as hot.
The true positive average prediction confidence starts low
(less than 50%), but gradually increases with each training
iteration until the confidence excelled 90%. For the false
positive average prediction confidence there are very few
cases after 6 training iterations and when they do occur, the
probability is considerably lower.
The minimum training and validation loss during training
iteration for the bounding box localization and object clas-
sification are presented in Fig. 8. For both networks, the
loss decreases until iteration 6. This is also approximately
the iteration at which the prediction confidence and action
selection improves (see Fig. 7). Despite the limited amount
of training data and limited number of training cycles, the
plateuing of the loss and the experimental results suggests
the robot can begin to learn the necessary visual features to
identify hot objects.

B. Heatmap Generalization

To demonstrate the generalization of the learned information
captured by the neural network to understand the heat
profile of the environment we apply our ‘thought experiment’
method. A number of examples of these heatmaps and their
respective scenes are given in Fig. 9. Fig. 9a shows the
heatmaps generated from unseen images using the neural
network for various training iterations (corresponding to
Fig. 7). The heatmap generated from the first iteration trained
network results shows no understanding of the heat profile
of the surface. As the number of iterations increases, the
heatmap belief improves which a clear prediction of the ‘on’
hotplate are having a higher probability of being hot. The

Fig. 9. Heatmaps generated using the ‘thought experiment’ method for
different images and trained networks.

second ‘off’ hot plate does have some probability of being
hot, but much lower. To evaluate this method more generally
we create three additional scenes which have ‘unseen’ ob-
jects (Fig. 9b). In all cases, the heatmap correctly generates
an approximately round area to indicate the ‘on’ hotplate,
with no ‘false-positive’ observed for the ‘off’ hotplate. The
heatmap generation seems largely unaffected by the presence
of additional objects in the scene suggesting that this meth-
ods seems promising for generalizing object understanding
to environmental understanding. In this demonstration, the
grasping location and orientation of each ‘unseen’ object is
pre-defined and the heatmap used only to decided whether
to execute the grasp or not.

VII. CONCLUSIONS & DISCUSSION

In this work we present the implementation of a robotic
manipulation system with an analog reflex override and a
visual learning system. The learning system leverages the
pain signal from the reflex to learn the visual context that
signals an object is hot. We show how this allows the
presence of objects being on a ‘hot plate’ and the corre-
sponding indicator light be learned with minimal training
data to allow the robot to make ‘safe’ decisions. This learning
information can be generalized from object detection to
detection of hot areas across a hot by utilizing the concept
of a ‘thought-experiment’. This mirrors the concept of an
internal simulation in the brain.
However, some challenges remain. For example, due to small
dataset size the performance of the network was sensitive to
the labels and information on the training dataset. Likewise,
the exploration parameter ϵ heavily affects the amount and
type of data obtained, which must be tuned. This could be
addressed for example if the training loss data can be used
to guide exploration. Further exploration and optimization
of these parameters would improve the robustness of this
method.

Although the specific case study is far from a realistic sce-
nario and the robotic manipulator is not seriously damaged
by hot temperatures, these approaches offer an insight into
potential approaches that could be deployed. By extending
this approach to incorporate additional nocireceptors, and
exploring advances in self-healing materials and damage
detection [17] would allow exploration in a more complex
and realistic scenario.

REFERENCES

[1] T. Zhang, W. Zhang, and M. M. Gupta, “Resilient robots: concept,
review, and future directions,” Robotics, vol. 6, no. 4, p. 22, 2017.

[2] R. A. Bilodeau and R. K. Kramer, “Self-healing and
damage resilience for soft robotics: A review,” Frontiers
in Robotics and AI, vol. 4, p. 48, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2211601X11001404

[3] S. Thrun and T. M. Mitchell, “Lifelong robot learning,” Robotics and
autonomous systems, vol. 15, no. 1-2, pp. 25–46, 1995.

[4] S. Cao, D. Fu, X. Yang, P. Barros, S. Wermter, X. Liu, and H. Wu,
“How can ai recognize pain and express empathy,” arXiv preprint
arXiv:2110.04249, 2021.

[5] D. Talmi, P. Dayan, S. J. Kiebel, C. D. Frith, and R. J. Dolan, “How
humans integrate the prospects of pain and reward during choice,”
Journal of Neuroscience, vol. 29, no. 46, pp. 14 617–14 626, 2009.

[6] B. Seymour, “Pain: A precision signal for reinforcement learning and
control,” Neuron, vol. 101, no. 6, pp. 1029–1041, 2019.

[7] G. Bekey and R. Tomovic, “Robot control by reflex actions,” in
Proceedings. 1986 IEEE International Conference on Robotics and
Automation, vol. 3. IEEE, 1986, pp. 240–247.

[8] Y. Masuda, K. Miyashita, K. Yamagishi, M. Ishikawa, and K. Hosoda,
“Brainless running: a quasi-quadruped robot with decentralized spinal
reflexes by solely mechanical devices,” in 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2020, pp. 4020–4025.

[9] A. A. Saputra, J. Botzheim, A. J. Ijspeert, and N. Kubota, “Combining
reflexes and external sensory information in a neuromusculoskeletal
model to control a quadruped robot,” IEEE Transactions on Cyber-
netics, 2021.

[10] R. A. John, N. Tiwari, M. I. B. Patdillah, M. R. Kulkarni, N. Tiwari,
J. Basu, S. K. Bose, C. J. Yu, A. Nirmal, S. K. Vishwanath, et al., “Self
healable neuromorphic memtransistor elements for decentralized sen-
sory signal processing in robotics,” Nature communications, vol. 11,
no. 1, pp. 1–12, 2020.

[11] L. Cellier, P. Dauchez, R. Zapata, and M. Uchiyama, “Collision
avoidance for a two-arm robot by reflex actions: Simulations and
experimentations,” Journal of Intelligent and Robotic Systems, vol. 14,
no. 2, pp. 219–238, 1995.

[12] A. Kara, K. Kawamura, S. Bagchi, and M. El-Gamal, “Reflex control
of a robotic aid system to assist the physically disabled,” IEEE Control
Systems Magazine, vol. 12, no. 3, pp. 71–77, 1992.

[13] S. Yigit, C. Burghart, and H. Woern, “Applying reflexes to enhance
safe human-robot-co-operation with a humanlike robot arm,” in Proc.,
35th International Symposium on Robotics. Citeseer, 2004.

[14] J. Wang, S. Elfwing, and E. Uchibe, “Modular deep reinforcement
learning from reward and punishment for robot navigation,” Neural
Networks, vol. 135, pp. 115–126, 2021.

[15] G. Jocher, A. Stoken, A. Chaurasia, J. Borovec, NanoCode012,
TaoXie, Y. Kwon, K. Michael, L. Changyu, J. Fang, A. V,
Laughing, tkianai, yxNONG, P. Skalski, A. Hogan, J. Nadar,
imyhxy, L. Mammana, AlexWang1900, C. Fati, D. Montes,
J. Hajek, L. Diaconu, M. T. Minh, Marc, albinxavi,
fatih, oleg, and wanghaoyang0106, “ultralytics/yolov5: v6.0 -
YOLOv5n ’Nano’ models, Roboflow integration, TensorFlow
export, OpenCV DNN support,” Oct. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5563715

[16] C. J. Watkins and P. Dayan, “Technical note: Q-learning,” Machine
Learning, vol. 8, no. 3, pp. 279–292, May 1992. [Online]. Available:
https://doi.org/10.1023/A:1022676722315

[17] T. George Thuruthel, A. W. Bosman, J. Hughes, and F. Iida, “Soft self-
healing fluidic tactile sensors with damage detection and localization
abilities,” Sensors, vol. 21, no. 24, p. 8284, 2021.

