Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Connecting Hodge and Sakaguchi-Kuramoto through a mathematical framework for coupled oscillators on simplicial complexes
 
research article

Connecting Hodge and Sakaguchi-Kuramoto through a mathematical framework for coupled oscillators on simplicial complexes

Arnaudon, Alexis  
•
Peach, Robert L.
•
Petri, Giovanni
Show more
August 16, 2022
Communications Physics

Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model on weighted simplicial complexes with phases supported on simplices of any order k, we introduce linear and non-linear frustration terms independent of the orientation of the k + 1 simplices, as a natural generalization of the Sakaguchi-Kuramoto model to simplicial complexes. With increasingly complex simplicial complexes, we study the the dynamics of the edge simplicial Sakaguchi-Kuramoto model with nonlinear frustration to highlight the complexity of emerging dynamical behaviors. We discover various dynamical phenomena, such as the partial loss of synchronization in subspaces aligned with the Hodge subspaces and the emergence of simplicial phase re-locking in regimes of high frustration.

Synchronization dynamics in the presence of higher order interactions is well represented through variations of the Kuramoto model and subject of current interest. Here, the authors study and characterize the behavior of the simplicial Kuramoto model with weights on any simplices and in the presence of linear and nonlinear frustration, defined as the simplicial Sakaguchi-Kuramoto model.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s42005-022-00963-7.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.9 MB

Format

Adobe PDF

Checksum (MD5)

9164e13a41159d271b4c4208d9866e4e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés