Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Spatial variability of multi-annual seasonal surface heat flux patterns of Lake Geneva
 
conference poster not in proceedings

Spatial variability of multi-annual seasonal surface heat flux patterns of Lake Geneva

Irani Rahaghi, Abolfazl  
•
Lemmin, Ulrich  
•
Cimatoribus, Andrea  
Show more
2018
ELLS-IAGLR-2018

The dynamics of the spatiotemporal surface heat flux (SurHF) of Lake Geneva (Switzerland/France) was estimated for a 7-y period. Data sources included hourly maps of over-the-lake assimilated meteorological data from a numerical weather model and Lake Surface Water Temperatures (LSWT) from satellite imagery. Analysis results indicate an average spatial SurHF range of > 40 W/m^2, mainly due to wind sheltering over parts of the lake. The difference between the time variation of the heat content in western and eastern parts of the lake derived from the SurHF estimates was consistent with the spatial heat content variation obtained from long-term temperature profile measurements in those parts. Our analyses also indicate a noticeable temporal change of the main controlling forcing when comparing heat fluxes in spring to the rest of the year. Such a regime change can be explained by the atmospheric thermal boundary layer dynamics that were unstable except in spring (March to early June). This resulted in much less spatial variability during springtime. The results emphasize that spatial variability in the meteorological and LSWT patterns will cause spatiotemporal SurHF variability that should be taken into consideration when assessing the time evolution of the heat budget of large water bodies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

IAGLR2018_abs1_final.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

7.72 KB

Format

Adobe PDF

Checksum (MD5)

9a5af3e649eb2eabbdcb39b3bd44aea9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés