Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Machine-Learning Based Monitoring of Cognitive Workload in Rescue Missions with Drones
 
research article

Machine-Learning Based Monitoring of Cognitive Workload in Rescue Missions with Drones

Dell'Agnola, Fabio
•
Jao, Ping-Keng
•
Arza, Adriana
Show more
June 29, 2022
IEEE Journal of Biomedical and Health Informatics

In search and rescue missions, drone operations are challenging and cognitively demanding. High levels of cognitive workload can affect rescuers’ performance, leading to failure with catastrophic outcomes. To face this problem, we propose a machine learning algorithm for real-time cognitive workload monitoring to understand if a search and rescue operator has to be replaced or if more resources are required. Our multimodal cognitive workload monitoring model combines the information of 25 features extracted from physiological signals, such as respiration, electrocardiogram, photoplethysmogram, and skin temperature, acquired in a noninvasive way. To reduce both subject and day inter-variability of the signals, we explore different feature normalization techniques, and introduce a novel weighted-learning method based on support vector machines suitable for subject-specific optimizations. On an unseen test set acquired from 34 volunteers, our proposed subject-specific model is able to distinguish between low and high cognitive workloads with an average accuracy of 87.3% and 91.2% while controlling a drone simulator using both a traditional controller and a new-generation controller, respectively.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JBHI2022-Machine-Learning_Based_Monitoring_of_Cognitive_Workload_in_Rescue_Missions_with_Drones.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.24 MB

Format

Adobe PDF

Checksum (MD5)

80701bd721724e99a25f567c0ed4cb60

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés