Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. On the projectivity of some moduli spaces of varieties
 
doctoral thesis

On the projectivity of some moduli spaces of varieties

Posva, Quentin Arthur Frantisek  
2022

This thesis is constituted of one article and three preprints that I wrote during my PhD thesis. Their common theme is the moduli theory of algebraic varieties. In the first article I study the Chow--Mumford line bundle for families of uniformly K-stable Fano pairs, and I show it is ample when the family has maximal variation. The three preprints deal with a generalization to positive characteristic of Kollár's gluing theory for stable varieties. I generalize this theory to surfaces and threefolds. Then I apply it to study the abundance conjecture for surfaces, the topology of lc centers on threefolds, existence of semi-resolutions for surfaces, and gluing theory for families of surfaces in mixed characteristic.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH9570.pdf

Type

N/a

Access type

openaccess

License Condition

copyright

Size

1.24 MB

Format

Adobe PDF

Checksum (MD5)

2ae56066041bfcf1231cc10a24fdc2bb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés