Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Removing Algorithmic Discrimination (With Minimal Individual Error)
 
research article

Removing Algorithmic Discrimination (With Minimal Individual Error)

El Mhamdi, El Mahdi  
•
Guerraoui, Rachid
•
Hoang, Lê Nguyên
Show more
May 19, 2022
Theoretical Computer Science

We address for the first time the problem of correcting group discriminations within a score function, while minimizing the individual error. Each group is described by a probability density function on the set of profiles. We first solve the problem analytically in the case of two populations, with a uniform bonus-malus on the zones where each population is a majority. We then address the general case of n populations, where the entanglement of populations does not allow a similar analytical solution. We show that an approximate solution with an arbitrarily high level of precision can be computed with linear programming. Finally, we address the reverse problem where the error should not go beyond a certain value and we seek to minimize the discrimination.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Removing_Algorithmic_Discrimination2022.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

336.77 KB

Format

Adobe PDF

Checksum (MD5)

eb51f4f4c70774cd2e9c278d90844780

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés