Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Simultaneous supersingular reductions of CM elliptic curves
 
research article

Simultaneous supersingular reductions of CM elliptic curves

Aka, Menny
•
Luethi, Manuel
•
Michel, Philippe  
Show more
February 25, 2022
Journal Fur Die Reine Und Angewandte Mathematik

We study the simultaneous reductions at several supersingular primes of elliptic curves with complex multiplication. We show - under additional congruence assumptions on the CM order - that the reductions are surjective (and even become equidistributed) on the product of supersingular loci when the discriminant of the order becomes large. This variant of the equidistribution theorems of Duke and Cornut-Vatsal is an(other) application of the recent work of Einsiedler and Lindenstrauss on the classification of joinings of higher-rank diagonalizable actions.

  • Details
  • Metrics
Type
research article
DOI
10.1515/crelle-2021-0086
Web of Science ID

WOS:000761301500001

Author(s)
Aka, Menny
Luethi, Manuel
Michel, Philippe  
Wieser, Andreas
Date Issued

2022-02-25

Published in
Journal Fur Die Reine Und Angewandte Mathematik
Subjects

Mathematics

•

Mathematics

•

subconvexity problem

•

integer points

•

equidistribution

•

liftings

•

spheres

•

values

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
TAN  
Available on Infoscience
March 14, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/186323
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés