Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions
 
research article

Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions

Teichert, G.H.
•
Natarajan, A.R.  
•
Van der Ven, A.
Show more
2019
Computer Methods in Applied Mechanics and Engineering

The free energy of a system is central to many material models. Although free energy data is not generally found directly, its derivatives can be observed or calculated. In this work, we present an Integrable Deep Neural Network (IDNN) that can be trained to derivative data obtained from atomic scale models and statistical mechanics, then analytically integrated to recover an accurate representation of the free energy. The IDNN is demonstrated by training to the chemical potential data of a binary alloy with B2 ordering. The resulting DNN representation of the free energy is used in a mesoscopic, phase field simulation and found to predict the appropriate formation of antiphase boundaries in the material. In contrast, a B-spline representation of the same data failed to resolve the physics of the system with sufficient fidelity to resolve the antiphase boundaries. Since the fine scale physics harbors complexity that emerges through the free energy in coarser-grained descriptions, the IDNN represents a framework for scale bridging in materials systems.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.cma.2019.05.019
Author(s)
Teichert, G.H.
Natarajan, A.R.  
Van der Ven, A.
Garikipati, K.
Date Issued

2019

Publisher

Elsevier

Published in
Computer Methods in Applied Mechanics and Engineering
Volume

353

Start page

201

End page

216

Subjects

Deep Neural Networks

•

Chemical potential

•

Phase field

•

Multiscale physics

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
MADES  
Available on Infoscience
February 4, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/185157
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés