Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Effect of collisions on non-adiabatic electron dynamics in ITG-driven microturbulence
 
research article

Effect of collisions on non-adiabatic electron dynamics in ITG-driven microturbulence

Ajay, C. J.
•
Brunner, Stephan  
•
Ball, Justin  
September 1, 2021
Physics Of Plasmas

Non-adiabatic electron response leads to significant changes in ion temperature gradient (ITG) eigenmodes, leading, in particular, to fine-structures that are significantly extended along the magnetic field lines at corresponding mode rational surfaces (MRSs). These eigenmodes can nonlinearly interact with themselves to drive zonal flows via the so-called self-interaction mechanism. In this paper, the effect of collisions on these processes are studied. In the presence of non-adiabatic electrons, the linear growth rate of ITG eigenmodes decreases with the increasing collisionality. Detailed velocity space analysis of the distribution function shows that this results from collisions leading to a more adiabatic-like response of electrons away from MRSs. In linear simulations, collisions are furthermore found to broaden the radial width of the fine-structures, which translates to narrower tails of the eigenmode in extended ballooning space. The characteristic parallel scale length associated with these tails is shown to scale with the mean free path of electrons. In nonlinear turbulence simulations accounting for physically relevant values of collisionality, the fine-structures located at MRSs, together with the associated drive of zonal flows via self-interaction, are shown to persist and play a significant role. Published under an exclusive license by AIP Publishing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Paper_Collisions.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

1.19 MB

Format

Adobe PDF

Checksum (MD5)

081c221765dcc1347c19800b809038ff

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés