Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Residential density classification for sustainable housing development using a machine learning approach
 
conference paper

Residential density classification for sustainable housing development using a machine learning approach

Mohajeri, N.
•
Walch, Aline  
•
Assouline, D.
Show more
January 1, 2021
Carbon-Neutral Cities - Energy Efficiency And Renewables In The Digital Era (Cisbat 2021)
International Hybrid Conference on Carbon Neutral Cities - Energy Efficiency and Renewables in the Digital Era (CISBAT)

Using Machine Learning (ML) algorithms for classification of the existing residential neighbourhoods and their spatial characteristics (e.g. density) so as to provide plausible scenarios for designing future sustainable housing is a novel application. Here we develop a methodology using a Random Forests algorithm (in combination with GIS spatial data processing) to detect and classify the residential neighbourhoods and their spatial characteristics within the region between Oxford and Cambridge, that is, the 'Oxford-Cambridge Arc'. The classification model is based on four pre-defined urban classes, that is, Centre, Urban, Suburban, and Rural for the entire region. The resolution is a grid of 500 m x 500 m. The features for classification include (1) dwelling geometric attributes (e.g. garden size, building footprint area, building perimeter), (2) street networks (e.g. street length, street density, street connectivity), (3) dwelling density (number of housing units per hectare), (4) building residential types (detached, semi-detached, terraced, and flats), and (5) characteristics of the surrounding neighbourhoods. The classification results, with overall average accuracy of 80% (accuracy per class: Centre: 38%, Urban 91%, Suburban 83%, and Rural 77%), for the Arc region show that the most important variables were three characteristics of the surrounding area: residential footprint area, dwelling density, and number of private gardens. The results of the classification are used to establish a baseline for the current status of the residential neighbourhoods in the Arc region. The results bring data-driven decision-making processes to the level of local authority and policy makers in order to support sustainable housing development at the regional scale.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Mohajeri_2021_J._Phys. _Conf._Ser._2042_012017.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

926.92 KB

Format

Adobe PDF

Checksum (MD5)

ba61e104d70dcba76378da6be7ee59af

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés